首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   0篇
安全科学   5篇
环保管理   29篇
基础理论   124篇
污染及防治   6篇
评价与监测   2篇
灾害及防治   9篇
  2015年   1篇
  2014年   9篇
  2013年   11篇
  2012年   1篇
  2011年   6篇
  2010年   12篇
  2009年   13篇
  2008年   5篇
  2007年   13篇
  2006年   8篇
  2005年   14篇
  2004年   17篇
  2003年   6篇
  2002年   2篇
  2001年   7篇
  1999年   1篇
  1997年   9篇
  1996年   4篇
  1995年   6篇
  1993年   5篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
171.
Iron-carbon (Fe-C) composite microspheres prepared through a facile aerosol-based process are effective remediation agents for the simultaneous adsorption and reduction of chlorinated hydrocarbons. Complete dechlorination was achieved for the class of chlorinated ethenes that include tetrachloroethylene (PCE), trichloroethylene (TCE), cis- and trans-1,2-dicloroethylene (c-DCE, t-DCE), 1,1-dichloroethylene (1,1-DCE) and, vinyl chloride (VC). The Fe-C particles potentially provides multi-functionality with requisite characteristics of adsorption, reaction, and transport for the effective in situ remediation of chlorinated hydrocarbons. The carbon support immobilizes the ferromagnetic iron nanoparticles onto its surface, thereby inhibiting aggregation. The adsorptive nature of the carbon support prevents the release of toxic intermediates such as the dichloroethylenes and vinyl chloride. The adsorption of chlorinated ethenes on the Fe-C composites is higher (>80%) than that of humic acid (<35%) and comparable to adsorption on commercial activated carbons (>90%). The aerosol-based process is an efficient method to prepare adsorptive-reactive composite particles in the optimal size range for transport through the porous media and as effective targeted delivery agents for the in situ remediation of soil and groundwater contaminants.  相似文献   
172.
Abstract:  Identification of factors that drive changes in plant community structure and contribute to decline and endangerment of native plant species is essential to the development of appropriate management strategies. Introduced species are assumed to be driving causes of shifts in native plant communities, but unequivocal evidence supporting this view is frequently lacking. We measured native vegetation, non-native earthworm biomass, and leaf-litter volume in 15 forests in the presence and absence of 3 non-native plant species ( Microstegium vimineum, Alliaria petiolata, Berberis thunbergii ) to assess the general impact of non-native plant and earthworm invasions on native plant communities in northeastern United States. Non-native plant cover was positively correlated with total native plant cover and non-native earthworm biomass. Earthworm biomass was negatively associated with cover of native woody and most herbaceous plants and with litter volume. Graminoid cover was positively associated with non-native earthworm biomass and non-native plant cover. These earthworm-associated responses were detected at all sites despite differences in earthworm species and abundance, composition of the native plant community, identity of invasive plant species, and geographic region. These patterns suggest earthworm invasion, rather than non-native plant invasion, is the driving force behind changes in forest plant communities in northeastern North America, including declines in native plant species, and earthworm invasions appear to facilitate plant invasions in these forests. Thus, a focus on management of invasive plant species may be insufficient to protect northeastern forest understory species.  相似文献   
173.
Abstract:  A major challenge facing pest-eradication efforts is determining when eradication has been achieved. When the pest can no longer be detected, managers have to decide whether the pest has actually been eliminated and hence to decide when to terminate the eradication program. For most eradication programs, this decision entails considerable risk and is the largest single issue facing managers of such programs. We addressed this issue for an eradication program of feral pigs ( Sus scrofa ) from Santa Cruz Island, California. Using a Bayesian approach, we estimated the degree of confidence in the success of the eradication program at the point when monitoring failed to detect any more pigs. Catch-effort modeling of the hunting effort required to dispatch pigs during the eradication program was used to determine the relationship between detection probability and searching effort for different hunting methods. We then used these relationships to estimate the amount of monitoring effort required to declare eradication successful with criteria that either set a threshold for the probability that pigs remained undetected (type I error) or minimized the net expected costs of the eradication program (cost of type I and II errors). For aerial and ground-based monitoring techniques, the amount of search effort required to declare eradication successful on the basis of either criterion was highly dependent on the prior belief in the success of the program unless monitoring intensities exceeded 30 km of searching effort per square kilometer of search area for aerial monitoring and, equivalently, 38 km for ground monitoring. Calculation of these criteria to gauge the success of eradication should form an essential component of any eradication program as it allows for a transparent assessment of the risks inherent in the decision to terminate the program.  相似文献   
174.
175.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号