首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   3篇
  国内免费   1篇
安全科学   7篇
废物处理   15篇
环保管理   20篇
综合类   14篇
基础理论   34篇
环境理论   1篇
污染及防治   40篇
评价与监测   35篇
社会与环境   5篇
灾害及防治   1篇
  2023年   3篇
  2022年   5篇
  2021年   10篇
  2020年   1篇
  2019年   3篇
  2018年   7篇
  2017年   8篇
  2016年   11篇
  2015年   6篇
  2014年   8篇
  2013年   11篇
  2012年   3篇
  2011年   9篇
  2010年   13篇
  2009年   10篇
  2008年   8篇
  2007年   7篇
  2006年   4篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   6篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
  1968年   1篇
  1964年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
71.
A two-stage process has been developed for stabilization of sludge and removal of heavy metals from the secondary activated sludge with high rate of energy and time conservation.The first stage of the process involves autoheated thermophilic aerobic digestion at 55-60°C inoculated with less-acidophilic thermophilic sulfur-oxidizing microorganisms(ATAD).The results show that it is possible to maintain the autoheated conditions(55-60°C) in the ATAD reactor up to 24 hr,leading to reduction of 21% total solids(TS),27% volatile solids(VS),27% suspended solids(SS) and 33% volatile suspended solids(VSS) from the sludge.The sludge pH also decreased from 7 to 4.6 due to the activity of less-acidophilic thermophilic microorganisms.In the second stage operation,the digested sludge(pH 4.6,TS 31.6 g/L) from stage one was subjected to bioleaching in a continuous stirred tank reactor,operated at mean hydraulic retention times(HRTs) of 12,24 and 36 hr at 30°C.An HRT of 24 hr was found to be sufficient for removal of 70% Cu,70% Mn,75% Ni,and 80% Zn from the sludge.In all,39% VSS,76% Cu,78.2% Mn,79.5% Ni and 84.2% Zn were removed from the sludge in both the stages.  相似文献   
72.
A metal fractionation study on bed sediments of River Narmada in Central India has been carried out to examine the enrichment and partitioning of different metal species between five geochemical phases (exchangeable fraction, carbonate fraction, Fe/Mn oxide fraction, organic fraction and residual fraction). The river receives toxic substances through a large number of tributaries and drains flowing in the catchment of the river. The toxic substances of particular interest are heavy metals derived from urban runoff as well as municipal sewage and industrial effluents. Heavy metals entering the river get adsorbed onto the suspended sediments, which in due course of time settle down in the bottom of the river. In this study fractionation of metal ions has been carried out with the objective to determine the eco-toxic potential of metal ions. Although, in most cases (except iron) the average trace/heavy metal concentrations in sediments were higher than the standard shale values, the risk assessment code as applied to the present study reveals that only about 1–3% of manganese, <1% of copper, 16–19% of nickel, 4–20% of chromium, 1–4% of lead, 8–13% of cadmium and 1–3% of zinc exist in exchangeable fraction and therefore falls under low to medium risk category. According to the Geo-accumulation Index (GAI), cadmium shows high accumulation in the river sediments, rest of other metals are under unpolluted to moderately polluted class.  相似文献   
73.
Atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) in Delhi were evaluated to study particulate PAHs profiles during the different seasons of 2003. Samples of urban suspended particulate matter were collected during January 2003 to December 2003 at three locations (Okhla, Dhaulakuan and Daryaganj), using a high volume sampler provided with glass fiber filters. Samples were analyzed using the gas chromatography technique. The annual average concentrations of total PAHs were found as 1,049.3 ng/m(3) at Okhla, 1,344.37 ng/m(3) at Daryaganj, and 1,117.14 ng/m(3) at Dhaulakuan. The seasonal average concentrations were found to be maximum in winter and minimum during the monsoon season. Principal Component Analysis (PCA) of the data was also carried out and the results indicate that diesel and gasoline driven vehicles are the principal sources of PAHs at all the three sites under investigation. Other sources might come from stationary combustion sources such as cooking fuel combustion and industrial emission.  相似文献   
74.
Migration pattern of organochloro pesticide lindane has been studied in groundwater of metropolitan city Vadodara. Groundwater flow was simulated using the groundwater flow model constructed up to a depth of 60 m considering a three-layer structure with grid size of 40?×?40?×?40 m3. The general groundwater flow direction is from northeast to south and southwest. The river Vishwamitri and river Jambua form natural hydrologic boundary. The constant head in the north and south end of the study area is taken as another boundary condition in the model. The hydraulic head distribution in the multilayer aquifer has been computed from the visual MODFLOW groundwater flow model. TDS has been computed though MT3D mass transport model starting with a background concentration of 500 mg/l and using a porosity value of 0.3. Simulated TDS values from the model matches well with the observed data. Model MT3D was run for lindane pesticide with a background concentration of 0.5?μg/l. The predictions of the mass transport model for next 50 years indicate that advancement of containment of plume size in the aquifer system both spatially and depth wise as a result of increasing level of pesticide in river Vishwamitri. The restoration of the aquifer system may take a very long time as seen from slow improvement in the groundwater quality from the predicted scenarios, thereby, indicating alarming situation of groundwater quality deterioration in different layers. It is recommended that all the industries operating in the region should install efficient effluent treatment plants to abate the pollution problem.  相似文献   
75.
The river Hindon is one of the important tributaries of river Yamuna in western Uttar Pradesh (India) and carries pollution loads from various municipal and industrial units and surrounding agricultural areas. The main sources of pollution in the river include municipal wastes from Saharanpur, Muzaffarnagar and Ghaziabad urban areas and industrial effluents of sugar, pulp and paper, distilleries and other miscellaneous industries through tributaries as well as direct inputs. In this paper, chemical mass balance approach has been used to assess the contribution from non-point sources of pollution to the river. The river system has been divided into three stretches depending on the land use pattern. The contribution of point sources in the upper and lower stretches are 95 and 81% respectively of the total flow of the river while there is no point source input in the middle stretch. Mass balance calculations indicate that contribution of nitrate and phosphate from non-point sources amounts to 15.5 and 6.9% in the upper stretch and 13.1 and 16.6% in the lower stretch respectively. Observed differences in the load along the river may be attributed to uncharacterized sources of pollution due to agricultural activities, remobilization from or entrainment of contaminated bottom sediments, ground water contribution or a combination of these sources.  相似文献   
76.
The ground water quality of District Nainital (Uttarakhand, India) has been assessed to see the suitability of ground water for drinking and irrigation applications. This is a two-part series paper and this paper examines the suitability of ground water including spring water for drinking purposes. Forty ground water samples (including 28 spring samples) were collected during pre- and post-monsoon seasons and analyzed for various water quality constituents. The hydrochemical and bacteriological data was analyzed with reference to BIS and WHO standards and their hydrochemical facies were determined. The concentration of total dissolved solids exceeds the desirable limit of 500 mg/L in about 10% of the samples, alkalinity values exceed the desirable limit of 200 mg/L in about 30% of the samples, and total hardness values exceed the desirable limit of 300 mg/L in 15% of the samples. However, no sample crosses the maximum permissible limit for TDS, alkalinity, hardness, calcium, magnesium, chloride, sulfate, nitrate, and fluoride. The concentration of chloride, sulfate, nitrate, and fluoride are well within the desirable limit at all the locations. The bacteriological analysis of the samples does not show any sign of bacterial contamination in hand pump and tube-well water samples. However, in the case of spring water samples, six samples exceed the permissible limit of ten coliforms per 100 ml of sample. It is recommended that water drawn from such sources should be properly disinfected before being used for drinking and other domestic applications. Among the metal ions, the concentration of iron and lead exceeds the permissible limit at one location whereas the concentration of nickel exceeds the permissible limit in 60 and 32.5% of the samples during pre- and post-monsoon seasons, respectively. The grouping of samples according to their hydrochemical facies indicates that majority of the samples fall in Ca–Mg–HCO3 hydrochemical facies.  相似文献   
77.
The paper describes the training, validation and application of artificial neural network (ANN) models for computing the dissolved oxygen (DO) and biochemical oxygen demand (BOD) levels in the Gomti river (India). Two ANN models were identified, validated and tested for the computation of DO and BOD concentrations in the Gomti river water. Both the models employed eleven input water quality variables measured in river water over a period of 10 years each month at eight different sites. The performance of the ANN models was assessed through the coefficient of determination (R2) (square of the correlation coefficient), root mean square error (RMSE) and bias computed from the measured and model computed values of the dependent variables. Goodness of the model fit to the data was also evaluated through the relationship between the residuals and model computed values of DO and BOD. The model computed values of DO and BOD by both the ANN models were in close agreement with their respective measured values in the river water. Relative importance and contribution of the input variables to the model output was evaluated through the partitioning approach. The identified ANN models can be used as tools for the computation of water quality parameters.  相似文献   
78.
The present work investigated the levels of total volatile organic compounds (TVOC) and benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX) in different microenvironments in the library of Jawaharlal Nehru University in summer and winter during 2011–2012. Carcinogenic and non-carcinogenic health risks due to organic compounds were also evaluated using US Environmental Protection Agency (USEPA) conventional approaches. Real-time monitoring was done for TVOC using a data-logging photo-ionization detector. For BTEX measurements, the National Institute for Occupational Safety and Health (NIOSH) standard method which consists of active sampling of air through activated charcoal, followed by analysis with gas chromatography, was performed. Simultaneously, outdoor measurements for TVOC and BTEX were carried out. Indoor concentrations of TVOC and BTEX (except benzene) were higher as compared to the outdoor for both seasons. Toluene and m/p-xylene were the most abundant organic contaminant observed in this study. Indoor to outdoor (I/O) ratios of BTEX compounds were generally greater than unity and ranged from 0.2 to 8.7 and 0.2 to 4.3 in winter and summer, respectively. Statistical analysis and I/O ratios showed that the dominant pollution sources mainly came from indoors. The observed mean concentrations of TVOC lie within the second group of the Molhave criteria of indoor air quality, indicating a multifactorial exposure range. The estimated lifetime cancer risk (LCR) due to benzene in this study exceeded the value of 1?×?10?6 recommended by USEPA, and the hazard quotient (HQ) of non-cancer risk came under an acceptable range.  相似文献   
79.
A multivariate time series approach vector autoregression (VAR) along with impulse response function and variance decomposition technique has been employed to look into the interrelationship among O3, NO, NO2, and volatile organic compounds (VOCs, namely, benzene, ethylbenzene, toluene, and xylene in the present study) using 3 months long continuous time series data of 1 h average concentration of these pollutants at one of the traffic sites in Delhi, India. It is found that the VAR of order 2 (i.e., past two lagged values of 1 h interval) is sufficient to represent the observed time series at the station studied. The impulse response function and variance decomposition analysis indicate that O3 concentration shows an immediate rise and persists for a longer duration (typically 8–10 h) once the impulse of NO2, benzene, ethylbenzene, or xylene is given in the ambient environment. However, in case of toluene, the reverse effect has been observed. Since O3 forms in the troposphere due to photolysis of NO2, it is not surprising that its impulse triggers O3 formation in the ambient environment. However, in case of VOCs, this has been attributed to their tendency to show higher inclination toward intermediary reactions leading to the formation of O3 rather than their (VOCs) reaction with O3. Among VOCs, only toluene has been observed to show higher inclination toward its reaction with O3. Apart from this, variance decomposition technique also reveals that the relation of NO with NO2 is more important than the relation of NO with O3 creating a conducive atmosphere for O3 formation in the present scenario. Thus, the multivariate time series approach provides significant insight about the role played by the dominant individual VOCs and NO x in influencing the O3 concentration in ambient urban atmosphere whereas a photochemical modeling approach gives an overall view of NO x and VOCs behavior with respect to O3 by using the O3 isopleth technique.  相似文献   
80.
ABSTRACT

The aim of this work is to provide a systematic approach for sustainability criteria clustering into different useful categories. For this purpose, a methodology has been proposed with the following three steps. (i) A comprehensive set of the sustainability criteria in economic, environmental and social dimension has been extracted from the literature and have been customised for the iron and steel industry. (ii) A fuzzy Kano methodology has been used to classify these sustainability criteria into useful Kano cluster like must-be, one-dimensional, and attractive cluster (iii) further, must-be and attractive criteria derived from the second step were further sub-classified into three categories using Type IV Kano model. All steps have been examined in the iron and steel industry of India and findings indicate that quality and delivery criteria are classified as high must be criteria in the economic realm. Further, environmental and energy management system in the environmental dimension and social responsibility and right of stakeholders criteria in the social dimension are classified as high must be criteria. Prioritising must be and attractive criteria enable decision makers of other industries to select the appropriate criteria to adopt sustainability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号