首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   7篇
  国内免费   6篇
安全科学   7篇
废物处理   7篇
环保管理   72篇
综合类   33篇
基础理论   76篇
污染及防治   64篇
评价与监测   19篇
社会与环境   11篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   5篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   6篇
  2015年   5篇
  2014年   12篇
  2013年   25篇
  2012年   17篇
  2011年   15篇
  2010年   6篇
  2009年   12篇
  2008年   15篇
  2007年   10篇
  2006年   10篇
  2005年   11篇
  2004年   11篇
  2003年   12篇
  2002年   10篇
  2001年   3篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有289条查询结果,搜索用时 31 毫秒
81.
Multivariate Analysis of the Ecoregion Delineation for Aquatic Systems   总被引:1,自引:0,他引:1  
The ecoregion concept is a popular method of understanding the spatial distribution of the environment', however, it has yet to be adequately demonstrated that the environment is distributed in accordance with these bounded units. In this paper, we generated a testable hypothesis based on the current usage of ecoregions: the ecoregion classification will allow for discrimination between lakes of different water quality. The ecoregion classification should also be more effective better than a comparably scaled classification based on political boundaries, land-use class, or random grouping. To test this hypothesis we used the Environmental Monitoring and Assessment Program (EMAP) lake water chemistry data from the northeast United States. The water chemistry data were reduced to four components using principal component analysis. For comparison to an optimal grouping of these data we used K-means cluster analysis to define the extent at which these lakes could be segregated into distinct classes. Jackknifed discriminant analysis was used to determine the classification rate of ecoregions, the three alternative spatial classification methods, and the clustering algorithm. The classification based on ecoregions was successful for 35% of the lakes included in this study, in comparison to the clustered groups accuracy of 98%. These results suggest that the large scale spatial distribution of ecosystem types is more complicated than that suggested by the present ecoregion boundaries. Further tests of ecoregion delineations are needed and alternative large-scale management strategies should be investigated.  相似文献   
82.
Extreme weather and climate-related events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, dust storms, flooding rains, coastal flooding, storm surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden. More information is needed about the impacts of climate change on public health and economies to effectively plan for and adapt to climate change. This paper describes some of the ways extreme events are changing and provides examples of the potential impacts on human health and infrastructure. It also identifies key research gaps to be addressed to improve the resilience of public health to extreme events in the future.

Implications: Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, flooding rains, coastal flooding, surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden.  相似文献   

83.
Street-level mean flow and turbulence govern the dispersion of gases away from their sources in urban areas. A suitable reference measurement in the driving flow above the urban canopy is needed to both understand and model complex street-level flow for pollutant dispersion or emergency response purposes. In vegetation canopies, a reference at mean canopy height is often used, but it is unclear whether this is suitable for urban canopies. This paper presents an evaluation of the quality of reference measurements at both roof-top (height = H) and at height z = 9H = 190 m, and their ability to explain mean and turbulent variations of street-level flow. Fast response wind data were measured at street canyon and reference sites during the six-week long DAPPLE project field campaign in spring 2004, in central London, UK, and an averaging time of 10 min was used to distinguish recirculation-type mean flow patterns from turbulence. Flow distortion at each reference site was assessed by considering turbulence intensity and streamline deflection. Then each reference was used as the dependent variable in the model of Dobre et al. (2005) which decomposes street-level flow into channelling and recirculating components. The high reference explained more of the variability of the mean flow. Coupling of turbulent kinetic energy was also stronger between street-level and the high reference flow rather than the roof-top. This coupling was weaker when overnight flow was stratified, and turbulence was suppressed at the high reference site. However, such events were rare (<1% of data) over the six-week long period. The potential usefulness of a centralised, high reference site in London was thus demonstrated with application to emergency response and air quality modelling.  相似文献   
84.
85.
We recently demonstrated whole genome sequencing of a human fetus using only parental DNA samples and plasma from the pregnant mother. This proof-of-concept study demonstrated how samples obtained noninvasively in the first or second trimester can be analyzed to yield a highly accurate and substantially complete genetic profile of the fetus, including both inherited and de novo variation. Here, we revisit our original study from a clinical standpoint, provide an overview of the scientific approach, and describe opportunities and challenges along the path toward clinical adoption of noninvasive fetal whole genome sequencing. © 2013 John Wiley & Sons, Ltd.  相似文献   
86.
Movement of liquor constituents from animal-waste lagoons has the potential to degrade ground water quality. The depth of movement and concentrations of lagoon-liquor constituents in the soil underlying three cattle (Bos taurus)-waste retention lagoons and one swine (Sus scrofa)-waste lagoon were determined. Samples were taken by using a direct-push coring machine, dissected by depth, and analyzed for total N, organic C, CaCO3, pH, cation exchange capacity (CEC), texture, and extractable NO3, NH(4), P, Cl, Ca, Mg, K, and Na. Ammonium N concentrations were greatest in the upper 0.5 m of soil under all four lagoons with concentrations ranging from 94 to 1139 mg kg(-1). Organic N was determined to make up between 39 and 74% of the total N beneath all lagoons. The swine lagoon had 2.4 kg N m(-2) in the underlying soil whereas the cattle lagoon with highest quantity of N had 1.2 kg N m(-2) in the underlying soil. Although N concentrations decreased with depth, N was greater than expected background levels at the bottom of some cores, indicating that the sampling efforts did not reach the bottom of the N plume. Nitrate N concentrations were generally less than 5 mg kg(-1) immediately below the lagoon floor. In the uppermost 0.5 m of soil underlying the swine and three cattle lagoons, NH4+ occupied 44% and between 1 and 22% of the soil cation exchange sites, respectively. The depth of movement of N under these lagoons, as much as 4 m, may pose remediation difficulties at lagoon closure.  相似文献   
87.
Control of sedimentation in large reservoirs requires soil conservation at the catchment scale. In large, heterogeneous catchments, soil conservation planning needs to be based on sound information, and set within the framework of a sediment budget to ensure that all of the potentially significant sources and sinks are considered. The major sources of sediment reaching the reservoir, Lake Argyle, in tropical northwestern Australia, have been determined by combining measured sediment fluxes in rivers with spatial tracer-based estimates of proportional contributions from tributaries of the main stream entering the lake, the Ord River. The spatial tracers used are mineral particle magnetics, the strontium isotopic ratio, and the neodymium isotopic ratio. Fallout of 137Cs has been used to estimate the proportion of the sediment in Lake Argyle eroded from surface soils by sheet and rill erosion, and, by difference, the proportion eroded from subsurface soils by gully and channel erosion. About 96% of the sediment in the reservoir has come from less than 10% of the catchment, in the area of highly erodible soils formed on Cambrian-age sedimentary rocks. About 80% of the sediment in the reservoir has come from gully and channel erosion. A major catchment revegetation program, designed to slow sedimentation in the reservoir, appears to have had little effect because it did not target gullies, the major source of sediment. Had knowledge of the sediment budget been available before the revegetation program was designed, an entirely different approach would have been taken.  相似文献   
88.
ABSTRACT: Historically, storm water management programs and criteria have focused on quantity issues related to flooding and drainage system design. Traditional designs were based on large rainfall‐runoff events such as those having two‐year to 100‐year return periods. While these are key criteria for management and control of peak flows, detention basin designs based on these criteria may not provide optimal quality treatment of storm runoff. As evidenced by studies performed by numerous public and private organizations, the water quality impacts of storm water runoff are primarily a function of more frequent rainfall‐runoff events rather than the less frequent events that cause peak flooding. Prior to this study there had been no detailed investigations to characterize the variability of the more frequent rainfall events on Guam. Also, there was a need to develop some criteria that could be applied by designers, developers, and agency officials in order to reduce the impact of storm water runoff on the receiving bodies. The objectives of this paper were three‐fold: (1) characterize the hourly rainfall events with respect to volume, frequency, duration, and the time between storm events; (2) evaluate the rainfall‐runoff characteristics with respect to capture volume for water quality treatment; and (3) prepare criteria for sizing and designing of storm water quality management facilities. The rainfall characterization studies have provided insight into the characteristics of rainstorms that are likely to produce non‐point source pollution in storm water runoff. By far the most significant fmdings are the development of a series of design curves that can be used in the actual sizing of storm water detention and treatment facilities. If applied correctly, these design curves could lead to a reduction of non‐point source pollution to Guam's streams, estuaries, and coastal environments.  相似文献   
89.
Lennon JT  Cottingham KL 《Ecology》2008,89(4):1001-1014
The rate, timing, and quality of resource supply exert strong controls on a wide range of ecological processes. In particular, resource-mediated changes in microbial activity have the potential to alter ecosystem processes, including the production and respiration of organic matter. In this study, we used field experiments and simulation modeling to explore how aquatic heterotrophic bacteria respond to variation in resource quality (low vs. high) and resource schedule (pulse vs. press). Field experiments revealed that one-time pulse additions of resources in the form of dissolved organic carbon (DOC) caused short-lived (< or =48 h) peaks in bacterial productivity (BP), which translated into large differences across treatments: cumulative BP was twice as high in the pulse vs. press treatment under low resource quality, and five times as high under high resource quality. To gain a more mechanistic understanding of microbial productivity in variable resource environments, we constructed a mathematical model to explore the attributes of bacterial physiology and DOC supply that might explain the patterns observed in our field experiments. Model results suggest that the mobilization rate of refractory to labile carbon, an index of resource quality, was critical in determining cumulative differences in BP between pulse and press resource environments (BPPu:Pr ratios). Moreover, BPPu:Pr ratios were substantially larger when our model allowed for realistic changes in bacterial growth efficiency as a function of bacterial carbon consumption. Together, our field and modeling results imply that resource schedule is important in determining the flow of material and energy from microbes to higher trophic levels in aquatic food webs, and that the effects of resource quality are conditional upon resource schedule. An improved understanding of the effects of resource variability on microorganisms is therefore critical for predicting potential changes in ecosystem functioning in response to environmental change, such as altered DOC fluxes from terrestrial to aquatic ecosystems.  相似文献   
90.
This study examined the relative impacts of different human activities and natural resource protections on the spatial distribution of beach vegetation and related habitat features (wrack, dune succession) in New Jersey (USA). Field surveys of the 209-km shoreline categorized beach segments according to vegetation cover classes, human activities, protection measures (exclosures, beach management plans, access restrictions) and ownership status (federal, state, etc.). A partition model (classification tree) was used to confirm the relative dominance hierarchy of human actions on the distribution of beach vegetation observed, and quantitative comparisons of dominant activities were conducted using vegetation data collected on 218 transects. The spatial extent of beach vegetation was found to be severely restricted by human activities when unconstrained by resource protections. The greatest reductions were found to result from mechanical raking (?99 %), scraping (?91 %) and all-year recreational ORV use (?86 %), which were dominant on nearly 70 % of the state shoreline. Beaches containing larger areas of vegetation (>5 m) were concentrated in areas with resource protections of various kinds (99 %), and on federal or other public parklands (68 %). Exclosures resulted in the greatest coverage of vegetation (48 % of beach surface) compared to public access restricted areas (41 %), beach management plans (31 %), government-only ORV use (31 %), and off-season recreational ORVs (15 %). Greater protection and recovery of beach vegetation and habitat is needed for species conservation and erosion protection in New Jersey and other coastal environments where these activities occur.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号