首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2997篇
  免费   3篇
  国内免费   36篇
安全科学   58篇
废物处理   144篇
环保管理   299篇
综合类   452篇
基础理论   1119篇
污染及防治   594篇
评价与监测   194篇
社会与环境   176篇
  2022年   3篇
  2021年   8篇
  2020年   4篇
  2019年   3篇
  2018年   114篇
  2017年   119篇
  2016年   180篇
  2015年   54篇
  2014年   15篇
  2013年   27篇
  2012年   428篇
  2011年   216篇
  2010年   26篇
  2009年   39篇
  2008年   55篇
  2007年   66篇
  2006年   67篇
  2005年   394篇
  2004年   532篇
  2003年   405篇
  2002年   45篇
  2001年   43篇
  2000年   21篇
  1999年   34篇
  1998年   8篇
  1997年   10篇
  1996年   5篇
  1995年   12篇
  1994年   7篇
  1993年   4篇
  1992年   4篇
  1991年   10篇
  1990年   4篇
  1989年   5篇
  1981年   3篇
  1978年   3篇
  1974年   5篇
  1972年   2篇
  1968年   3篇
  1967年   2篇
  1966年   3篇
  1965年   3篇
  1963年   2篇
  1962年   2篇
  1961年   3篇
  1958年   4篇
  1957年   5篇
  1956年   3篇
  1955年   4篇
  1943年   3篇
排序方式: 共有3036条查询结果,搜索用时 234 毫秒
641.
Deep-water assemblages of suprabenthic peracarids were analyzed in the SW Balearic Islands (Algerian Basin, southwestern Mediterranean) between 249 and 1,622 m depth; the patterns of species composition, possible zonation, and trophic structure found in this area were compared with those exhibited by peracarids in the mainland side of the Catalan Sea slope (northwestern Mediterranean). One hundred and four peracarid species (plus one leptostracan) were identified on the Balearic Islands slope, amphipods being the most diversified taxon (45 species). On the Balearic slope, two distinct depth assemblages were distinguished: one at the upper slope (US), between 249 and 402 m depth and the second at the deep slope, between 543 and 1,620 m depth. A remarkable species substitution occurred at depths between 402 and 638 m. In the Catalan Sea, in addition to the US assemblage occupying depths between 208 and 408 m, a second boundary of faunal change was found around 1,250 m. Suprabenthos biomass increased from 242 to approximately 500 m. Suprabenthos attained the highest biomass values (100 g wet weight/10,000 m2) at intermediate depths between 504 and 1,211 m, as also occurred with the associated zooplankton collected with suprabenthos (peak biomass between 502 m and 898 m). Suprabenthos biomass did not show any significant correlation with any environmental water-column variable. In contrast, zooplankton (especially small fish and decapod crustaceans) showed a significant positive correlation with fluorometry and turbidity at different levels of the water column. The feeding guilds of species showed important differences between the two areas only on the US, with a higher abundance of deposit feeders in the Catalan Sea (20.4%) than in the Balearic Islands (4.2%). The low contribution of deposit feeders in the SW Balearic Islands may ultimately be a consequence of the lack of river discharges in this area.Communicated by S.A. Poulet, Roscoff  相似文献   
642.
Although external sexually dimorphic traits are commonly found in males of combtooth blenny species, little is known about the benefit they can convey to male mating success. Indeed, while female preferences for large males have been demonstrated in some species, the possible role played by dimorphic ornaments has been neglected. We now report on the tentacled blenny, Parablennius tentacularis, a species where males are characterized by bulb glands on the anal fin and both sexes exhibit a dark spot on the dorsal fin and orbital tentacles. Males are territorial, make nests in empty bivalve shells, and provide solitary parental care for the eggs. Using morphometric analysis and field collected data on male and female external features, nest characteristics and number of eggs in the nests, we have assessed the development of dimorphic traits in both sexes and male mating success. The results reveal that orbital tentacles of males are more developed and more variable in size than those of females. Larger males exhibit longer orbital tentacles and larger anal glands but do not necessarily occupy larger nests. Male mating success is significantly correlated with the inner nest surface area and with orbital tentacle size but not with body size. These results provide support for a primary role of male ornaments in enhancing blenny male mating success and are discussed in the context of mate choice for direct and indirect benefits.  相似文献   
643.
The current study determined behavioral and electrophysiological photosensitivities for three species of mesopelagic crustaceans: Pasiphaea multidentata Esmark, 1866 (Decapoda: Pasiphaeidae), Sergestes arcticus Kröyer, 1855 (Decapoda: Sergestidae), and Meganyctiphanes norvegica M. Sars, 1857 (Euphausiacea: Euphausiidae). In addition, in situ quantifications of the species vertical distributions in relation to downwelling irradiances were also determined in two locations in the northwest Atlantic Ocean, Wilkinson Basin (WB) and Oceanographer Canyon (OC). Data are from six 2-week cruises between June and September from 1995 to 2001. P. multidentata and M. norvegica were the most abundant large crustaceans in WB, and S. arcticus and M. norvegica were the most abundant large crustaceans in OC. The behavioral light sensitivity thresholds of P. multidentata and M. norvegica from WB were both 107 photons cm–2 s–1 and those of S. arcticus and M. norvegica from OC were both 108 photons cm–2 s–1. Electrophysiologically, P. multidentata was significantly more sensitive than M. norvegica from either location, S. arcticus was significantly more sensitive than M. norvegica from OC, and M. norvegica from WB was significantly more sensitive than M. norvegica from OC. A correlation was found between electrophysiologically measured photosensitivity and downwelling irradiance, with the most sensitive species, P. multidentata and S. arcticus, associated with the lowest irradiance at daytime depths. The photosensitivities of M. norvegica collected from the clearer waters of OC were significantly lower than those of individuals collected from the more turbid WB waters. These results indicate that downwelling irradiance has a significant impact on interspecies and intraspecies vertical distribution patterns in the mesopelagic realm.Communicated by J.P. Grassle, New Brunswick  相似文献   
644.
Growth and feeding activities of the tintinnid ciliate Favella taraikaensis fed the toxic dinoflagellate Alexandrium tamarense were examined in laboratory experiments. Both growth and ingestion rates of F. taraikaensis as a function of the A. tamarense concentration were fitted to a rectangular hyperbolic equation. The maximum growth and ingestion rates of F. taraikaensis were 1.0 day–1 and 2.8 cells ind. h–1 (carbon specific ingestion rates: 3.5 day–1), respectively, which are both included in the range of previous data reported for Favella spp. feeding on other algae. The gross growth efficiency (GGE) of F. taraikaensis ranged from 0.26 to 0.49 (mean value 0.40) at the concentration of 10–800 cells ml–1, which is within the range of previous data on Favella spp. Also, the growth and ingestion rates and GGE of F. taraikaensis on A. tamarense were not significantly different from the values on another non-toxic dinoflagellate (Heterocapsa triquetra) at two different prey concentrations. This indicates that the toxicity of A. tamarense probably did not influence the feeding and growth activities of F. taraikaensis at concentrations of less than ca. 800 cells ml–1. To evaluate the grazing by F. taraikaensis on A. tamarense blooms in the field, the population dynamics of A. tamarense were simulated based on the growth and ingestion parameters of F. taraikaensis. As a result, the grazing impact by F. taraikaensis was considered to potentially regulate the development of A. tamarense blooms. If the toxicity of A. tamarense does not influence the growth and feeding activities of F. taraikaensis, the occurrence of such grazer plankton are considered to be important for predicting the course of A. tamarense bloom dynamics under natural conditions.Communicated by T. Ikeda, Hakodate  相似文献   
645.
The energetic cost of metamorphosis in cyprids of the barnacle Balanus amphitrite Darwin was estimated by quantification of lipid, carbohydrate and protein contents. About 38–58% (4–5 mJ individual–1) of cypris energy reserves were used during metamorphosis. Lipids accounted for 55–65%, proteins for 34–44% and carbohydrates for <2% of the energy used. Juveniles obtained from larvae fed 106 cells ml–1 of Chaetoceros gracilis were bigger (carapace length: 560–616 µm) and contained more energy (5.56±0.10 mJ juvenile–1) than their counterparts (carapace length: 420–462 µm; energy content: 2.49±0.20 mJ juvenile–1) obtained from larvae fed 104 cells ml–1. At water temperatures of 30°C and 24°C and food concentrations of 104 and 102 cells ml–1 (3:1 mixture of C. gracilis and Isochrysis galbana) as well as under field conditions (26.9±3.1°C and 2.2±0.8 µg chlorophyll a l–1), juveniles obtained from larvae fed the high food concentration grew faster than juveniles obtained from larvae fed low food concentration until 5 days post-metamorphosis. Laboratory experiments revealed a combined effect of early juvenile energy content, temperature and food concentration on growth until 5 days post-metamorphosis. After 10 days post-metamorphosis, the influence of the early juvenile energy content on growth became negligible. Overall, our results indicate that the energy content at metamorphosis is of critical importance for initial growth of juvenile barnacles and emphasize the dependency of the physiological performance of early juvenile barnacles on the larval exposure to food.Communicated by O. Kinne, Oldendorf/LuheAn erratum to this article can be found at  相似文献   
646.
Penaeid prawns were sampled with a small seine net to test whether catches of postlarvae and juveniles in seagrass were affected by the distance of the seagrass (mainly Zostera capricorni) from mangroves and the density of the seagrass in a subtropical marine embayment. Sampling was replicated on the western and eastern sides of Moreton Bay, Queensland, Australia. Information on catches was combined with broad-scale spatial information on the distribution of habitats to estimate the contribution of four different categories of habitat (proximal dense seagrass, distal dense seagrass, proximal sparse seagrass, distal sparse seagrass) to the overall population of small prawns in these regions of Moreton Bay. The abundance of Penaeus plebejus and Metapenaeus bennettae was significantly and consistently greater in dense seagrass proximal to mangroves than in other types of habitat. Additionally, sparse seagrass close to mangroves supported more of these species than dense seagrass farther away, indicating that the role of spatial arrangement of habitats was more important than the effects of structural complexity alone. In contrast, the abundance of P. esculentus tended to be greatest in sparse seagrass distal from mangroves compared with the other habitats. The scaling up of the results from different seagrass types suggests that proximal seagrass beds on both sides of Moreton Bay provide by far the greatest contribution of juvenile M. bennettae and P. plebejus to the overall populations in the Bay.Communicated by M.S. Johnson, Crawley  相似文献   
647.
The photosynthesis–irradiance response of Ecklonia radiata (C. Agardh) J. Agardh, a common kelp in the temperate southern hemisphere, was investigated in situ throughout the year and across a depth profile at West Island, South Australia. Temperature and irradiance environment altered throughout the year, varying at 3 m between 14–20°C and 279–705 mol photons m–2 s–1. Photosynthetic capacity (Pm) varied throughout the year between 177–278 mol O2 g–1 dry wt h–1 at 3 m and 133–348 mol O2 g–1 dry wt h–1 at 10 m. The irradiance required for sub-saturation of photosynthesis (Ek) varied between 97–152 and 81–142 mol photons m–2 s–1 for 3 m and 10 m respectively, and the respiration rate varied between 15–36 and 13–20 mol O2 g–1 dry wt h–1 for 3 m and 10 m. A clear seasonal change in photokinetic parameters was detected and provided strong evidence for a seasonal acclimation response. During winter an increase in the efficiency of light utilisation at low irradiance () was accompanied by a decrease in both Ek and that required for photosynthetic compensation. Pm also increased during the winter and autumn months and respiratory requirements decreased. These changes enable E. radiata to display an optimal photosynthetic performance throughout the year despite significant changes in the surrounding environment.Communicated by P.W. Sammarco, Chauvin  相似文献   
648.
Ontogenetic changes in the capacity of Senegalese sole (Solea senegalensis Kaup, 1858) larvae to digest and metabolise Artemia protein and amino acids (AA) were studied using 12, 22 and 35 days after hatching (DAH) larvae that were fed Artemia metanauplii radiolabelled with a [U-14C] protein hydrolysate. About 82% and 18% of the label was incorporated into the Artemia trichloroacetic acid (TCA) precipitate (mostly protein) and soluble (mainly free AA) fractions, respectively. The digestibility of Artemia was high at all tested ages, with label absorption varying between 77% and 83% at 24 h after feeding (HAF). A rapid digestion, absorption and catabolism of Artemia AA were noted, with most of the absorption into the body occurring during the first 3 HAF. Traces of label were already found in the metabolic-CO2 trap at 1 HAF. Furthermore, label was largely and almost immediately incorporated into the TCA precipitate fraction (mostly protein) of gut and body tissues. Slight differences were noted in diet utilization between larvae at different ages. At 12 DAH larvae had a lower catabolism and evacuation of the label, as well as the highest accumulation in the gut. However, except for the amount of catabolised label, the results were not significantly different from those for 35 DAH larvae. Moreover, no significant differences were found in the amount of label incorporated into the body, although it seemed to be higher in 12 DAH larvae. Taken together, these results reveal a higher absorption and a significantly higher retention of the absorbed label in 12 DAH larvae. In addition, 12 DAH larvae appeared to have a slower absorption of the label, which, in continuously feeding larvae, might result in overall lower food absorption efficiency. Therefore, it seems that young larvae have the ability to compensate for a possible lower digestive capacity with higher body retention of absorbed AA. This study confirms that sole larvae, even young stages, have a high capacity for digesting live preys.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   
649.
Concentrations of paralytic shellfish poisoning (PSP) toxins in toxic dinoflagellate cells and in marine planktonic copepods were monitored during the bloom of Alexandrium tamarense in Hiroshima Bay, western Japan. Concentration of the toxins retained by copepods was a function of the ambient toxin concentration, i.e. the product of A. tamarense cell density and cellular toxicity. The toxin concentration in copepods increased with the increase of toxicants in the seawater then leveled off, but decreased significantly at higher concentrations. In the field, the maximum toxin concentration was 1.2 pmol ind-1, whereas in the laboratory, the copepod Acartia omorii accumulated a much higher concentration of PSP toxins (24 pmol ind-1). Feeding avoidance against Alexandrium tamarense and a shift to alternative food sources such as diatoms in the field might keep their toxin levels lower than their potentially maximum level. The copepod toxin levels in the field were not so high as to cause an instantaneous lethal effect on their predator fishes but may reach possibly lethal levels after a few days' continuous feeding. Overall toxin retention by copepods after 12 h feeding and 2 h starvation was only 2.5% of total ingested toxins, which suggested that a significant amount of toxins was released into the seawater. Measurements of toxin reduction and gut evacuation suggested that the toxins were removed through both fecal evacuation and metabolism (e.g. excretion, decomposition and transformation). The results, as a whole, imply that copepods can be a link for PSP toxin flux in both pelagic and benthic food webs and can also be a sink for toxins by metabolizing and removing them from the environment.Communicated by T. Ikeda, Hakodate  相似文献   
650.
A total of 12 feeding experiments were conducted in the northern Gulf of Aqaba during spring (March/April) and autumn (September/October) 2002 at the Marine Science Station (MSS) in Aqaba. Females of three species of clausocalanids were selected: Clausocalanus farrani, C. furcatus and Ctenocalanus vanus. Natural occurring particle (NOP) larger than 5 μm were investigated as food source. The ambient chlorophyll a concentration at sampling depth (∼70 m) ranged between 0.15 and 1.00 μg chl a l−1 and NOP concentrations ranged between 1.78 and 14.0 × 103 cells l−1 during the sampling periods. The division of particles into five size classes (5–10, 10–20, 20–50, 50–100 and >100 μm) revealed that most of the particles were found in the size classes below 50 μm (81–98%), while most of the natural occurring carbon (NOC) was concentrated in the size classes larger than 20 μm (70–95%). Ingestion rates were food density dependent rather than size dependent ranging between 0.02 and 1.65 × 103 NOP ind−1 day−1 and 0.01 and 0.41 μg NOC ind−1 day−1, respectively, equivalent to a body carbon (BC) uptake between 0.4 and 51.8% BC day−1. The share of the size classes to the total ingestion resembled in most cases the size class composition of the natural particle community.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号