首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   830篇
  免费   31篇
  国内免费   8篇
安全科学   52篇
废物处理   33篇
环保管理   259篇
综合类   61篇
基础理论   200篇
环境理论   3篇
污染及防治   172篇
评价与监测   61篇
社会与环境   23篇
灾害及防治   5篇
  2023年   7篇
  2022年   6篇
  2021年   11篇
  2020年   7篇
  2019年   12篇
  2018年   15篇
  2017年   27篇
  2016年   26篇
  2015年   22篇
  2014年   32篇
  2013年   75篇
  2012年   37篇
  2011年   54篇
  2010年   36篇
  2009年   44篇
  2008年   43篇
  2007年   39篇
  2006年   48篇
  2005年   36篇
  2004年   34篇
  2003年   25篇
  2002年   37篇
  2001年   18篇
  2000年   14篇
  1999年   14篇
  1998年   14篇
  1997年   9篇
  1996年   9篇
  1995年   10篇
  1994年   13篇
  1993年   9篇
  1992年   6篇
  1991年   6篇
  1990年   8篇
  1989年   4篇
  1988年   7篇
  1987年   2篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1977年   5篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1960年   2篇
排序方式: 共有869条查询结果,搜索用时 15 毫秒
11.
12.
ABSTRACT: A non-linear optimization model is applied to the California State Water Project (SWP) and portions of the Central Valley Project (CVP). The model accounts for the major hydrologic, regulatory, and operational features of both projects. The model maximizes long-term SWP yields over a 70-year period, using a quarterly time step. The potential for increased yield associated with a proposed facility improvement is evaluated with the model. The proposed facility is an extension of the Folsom-South Canal, which would allow water to be conveyed from the American River below Folsom Reservoir into New Melones Reservoir on the Stanislaus River or into the California Aqueduct. Model results indicate that extension of the Folsom-South Canal has the potential to increase SWP yields by 13 percent.  相似文献   
13.
The authors investigated whether the relationship between the contents of emotional social support and job burnout among high‐school teachers is spurious because of the role of dispositional positive and negative affectivity. A national sample of 339 teachers was surveyed via a web‐based procedure. Hierarchical regression analyses did not support spuriousness; emotional social support was uniquely predictive of three dimensions of burnout controlling for affectivity. As positive emotional social support increased, emotional exhaustion and cynicism decreased, and professional efficacy increased. As negative emotional social support increased, emotional exhaustion and cynicism also increased. Commonality analyses based on the present data and data reported by K. L. Zellars and P. L. Perrewé (2001; Journal of Applied Psychology, 86, 459–467) provided additional support for the unique role of emotional social support on burnout, but these analyses suggest a greater role of affectivity than emotional social support. These findings have implications for research on burnout as well as the prevention of burnout among teachers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
14.
Loss of grassland species resulting from activities such as off-road vehicle use increases the need for models that predict effects of anthropogenic disturbance. The relationship of disturbance by military training to plant species richness and composition on two soils (Foard and Lawton) in a mixed prairie area was investigated. Track cover (cover of vehicle disturbance to the soil) and soil organic carbon were selected as measures of short- and long-term disturbance, respectively. Soil and vegetation data, collected in 1-m2 quadrats, were analyzed at three spatial scales (60, 10, and 1 m2). Plant species richness peaked at intermediate levels of soil organic carbon at the 10-m2 and 1-m2 spatial scales on both the Lawton and Foard soils, and at intermediate levels of track cover at all three spatial scales on the Foard soil. Species composition differed across the disturbance gradient on the Foard soil but not on the Lawton soil. Disturbance increased total plant species richness on the Foard soil. The authors conclude that disturbance up to intermediate levels can be used to maintain biodiversity by enriching the plant species pool.  相似文献   
15.
Using resource-monitoring data from seven protected areas, the effectiveness of three campfire policies—campfire ban, designated campfires, and unregulated campfires—were assessed based on the number of fire sites and the amount of tree damage. Results indicate that unregulated campfire policies permitted substantial numbers of fire sites and tree damage in campsites, although fire bans did not eliminate or even substantially decrease these problems. A designated campfire policy was effective in decreasing number of fire sites, but little difference was found among policies regarding tree damage. Given the importance of campfires to visitor experiences, campfire prohibitions could be viewed as unnecessarily restrictive based on their limited success in preventing resource damage. Conclusions encourage protected-area managers to consider designated campfire policies and prohibitions on axes, hatchets, and saws to better meet resource protection and visitor experience mandates.  相似文献   
16.
Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.  相似文献   
17.
Abundance estimates are essential for assessing the viability of populations and the risks posed by alternative management actions. An effort to estimate abundance via a repeated mark‐recapture experiment may fail to recapture marked individuals. We devised a method for obtaining lower bounds on abundance in the absence of recaptures for both panmictic and spatially structured populations. The method assumes few enough recaptures were expected to be missed by random chance. The upper Bayesian credible limit on expected recaptures allows probabilistic statements about the minimum number of individuals present in the population. We applied this method to data from a 12‐year survey of pallid sturgeon (Scaphirhynchus albus) in the lower and middle Mississippi River (U.S.A.). None of the 241 individuals marked was recaptured in the survey. After accounting for survival and movement, our model‐averaged estimate of the total abundance of pallid sturgeon ≥3 years old in the study area had a 1%, 5%, or 25% chance of being <4,600, 7,000, or 15,000, respectively. When we assumed fish were distributed in proportion to survey catch per unit effort, the farthest downstream reach in the survey hosted at least 4.5–15 fish per river kilometer (rkm), whereas the remainder of the reaches in the lower and middle Mississippi River hosted at least 2.6–8.5 fish/rkm for all model variations examined. The lower Mississippi River had an average density of pallid sturgeon ≥3 years old of at least 3.0–9.8 fish/rkm. The choice of Bayesian prior was the largest source of uncertainty we considered but did not alter the order of magnitude of lower bounds. Nil‐recapture estimates of abundance are highly uncertain and require careful communication but can deliver insights from experiments that might otherwise be considered a failure.  相似文献   
18.
Global climate change will influence environmental conditions including temperature, surface radiation, soil moisture, and sea level, and it will also significantly impact regional-scale hydrologic processes such as evapotranspiration (ET), precipitation, runoff, and snowmelt. The quantity and quality of water available for drinking and other domestic usage is also likely to be affected by changes in these processes. Consequently, it is necessary to assess and reflect upon the challenges ahead for water infrastructure and the general public in metropolitan regions. One approach to the problem is to use index-based assessment, forecasting and planning. The drought indices previously developed were not developed for domestic water supplies, and thus are insufficient for the purpose of such an assessment. This paper aims to propose and develop a “Metropolitan Water Availability Index (MWAI)” to assess the status of both the quantity and quality of available potable water sources diverted from the hydrologic cycle in a metropolitan region. In this approach, the accessible water may be expressed as volume per month or week (i.e., m3/month or m3/week) relative to a prescribed historical record, and such a trend analysis may result in final MWAI values ranging from ?1 to +1 for regional water management decision making. The MWAI computation uses data and information from both historical point measurements and spatial remote-sensing based monitoring. Variables such as precipitation, river discharge, and water quality changes at drinking water plant intakes at specific locations are past “point” measurements in MWAI calculations. On the other hand, remote sensing provides information on both spatial and temporal distributions of key variables. Examples of remote-sensing images and sensor network technologies are in-situ sensor networks, ground-based radar, air-borne aircraft, and even space-borne satellites. A case study in Tampa Bay, Florida is described to demonstrate the short-term assessment of the MWAI concept at a practical level. It is anticipated that such a forecasting methodology may be extended for middle-term and long-term water supply assessment.  相似文献   
19.
In large areas of the arid western United States, much of which are federally managed, fire frequencies and associated management costs are escalating as flammable, invasive cheatgrass (Bromus tectorum) increases its stronghold. Cheatgrass invasion and the subsequent increase in fire frequency result in the loss of native vegetation, less predictable forage availability for livestock and wildlife, and increased costs and risk associated with firefighting. Revegetation following fire on land that is partially invaded by cheatgrass can reduce both the dominance of cheatgrass and its associated high fire rate. Thus restoration can be viewed as an investment in fire-prevention and, if native seed is used, an investment in maintaining native vegetation on the landscape. Here we develop and employ a Markov model of vegetation dynamics for the sagebrush steppe ecosystem to predict vegetation change and management costs under different intensities and types of post-fire revegetation. We use the results to estimate the minimum total cost curves for maintaining native vegetation on the landscape and for preventing cheatgrass dominance. Our results show that across a variety of model parameter possibilities, increased investment in post-fire revegetation reduces long-term fire management costs by more than enough to offset the costs of revegetation. These results support that a policy of intensive post-fire revegetation will reduce long-term management costs for this ecosystem, in addition to providing environmental benefits. This information may help justify costs associated with revegetation and raise the priority of restoration in federal land budgets.  相似文献   
20.
Real-time monitoring and control of temperature in ultrasonic joining of battery tabs and coupons are important for the quality improvement and cost reduction of battery assembly. However, there have always been difficulties in accurate and real-time measurement of temperature by conventional sensors for practical implementation. In this study, an innovative method is developed to provide an enabling technology for the in situ transient temperature monitoring, which could provide reliable feedback signals for potential control of ultrasonic joining processes. Micro thin film thermocouples (TFTCs) were fabricated on thin silicon substrates, which were then inserted in the welding anvil as a permanent feature so that the sensors were always located about 100 μm directly under the welding spot during joining of multilayer Ni-coated Cu thin sheets for battery assembly. Good repeatability was demonstrated while a temperature rise of up to 650 °C was obtained due to the closeness of the sensors to the welding spot. The inserts with thin film sensors remained functional after welding experiments. This method has a great potential for in situ transient temperature monitoring, and thus the control of ultrasonic joining processes to realize a practical smart joining system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号