首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3099篇
  免费   2篇
  国内免费   40篇
安全科学   61篇
废物处理   157篇
环保管理   310篇
综合类   409篇
基础理论   1131篇
环境理论   1篇
污染及防治   690篇
评价与监测   199篇
社会与环境   180篇
灾害及防治   3篇
  2023年   3篇
  2022年   9篇
  2021年   12篇
  2020年   5篇
  2019年   5篇
  2018年   115篇
  2017年   128篇
  2016年   183篇
  2015年   54篇
  2014年   18篇
  2013年   60篇
  2012年   435篇
  2011年   228篇
  2010年   37篇
  2009年   38篇
  2008年   57篇
  2007年   82篇
  2006年   87篇
  2005年   402篇
  2004年   540篇
  2003年   413篇
  2002年   49篇
  2001年   43篇
  2000年   22篇
  1999年   30篇
  1998年   6篇
  1997年   12篇
  1996年   7篇
  1995年   11篇
  1994年   6篇
  1993年   3篇
  1992年   3篇
  1991年   8篇
  1990年   5篇
  1989年   5篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
  1961年   1篇
  1957年   1篇
排序方式: 共有3141条查询结果,搜索用时 710 毫秒
691.
GOAL, SCOPE AND BACKGROUND: Complaints by residents of frame-houses about musty odour in the houses has become an increasing problem within the last years. An additional problem is that the odour is transferred to clothes and skin. The persons themselves do not recognize the smell after a while because of adaptation. Serious social problems are the result. For a long time, the smell was explained to be from mould due to construction-based humidity problems. However, in an increasing number of houses, no indications were found for elevated levels of mould growth. METHODS: Air and material samples were taken from 5 houses, which show typical musty odours, and analysed with respect to chlorophenols and chloroanisoles. Additionally, some samples were analysed for lindane and its metabolites, because lindane was commonly used together with pentachlorophenol (PCP) for wood protection. RESULTS AND DISCUSSION: Meticulous analysis resulted in the identification of chloroanisoles, mainly 2,3,4,6-tetrachloroanisole. These substances are known from corky wines and from contamination of food from pentachlorophenol (PCP) treated pallets and result from microbiological metabolic processes. Pentachlorophenol was commonly used to protect wood from fungi in Germany mainly in the later 60s and 70s. Details of these processes, as well as effective methods to identify chloroanisoles in the problem houses, are described. CONCLUSIONS: Chloroanisoles formed by metabolism of PCP have been well known to contaminate food or wine. Here, they were identified and are probably responsible for the musty odours in the frame houses. Since it is quite clear that these substances were not components of building materials used in the houses, an explanation for chloroanisole formation is proposed. Localized dampness probably favours microbial growth associated with metabolic conversion of chlorophenols to the corresponding chloroanisoles, primarily 2,3,4,6-tetrachloroanisol, which spread throughout the buildings, resulting in the observed odours. RECOMMENDATIONS AND OUTLOOK: The group of chloroanisoles has been recognized as important indoor pollutants as they possess musty odours at extremely low concentrations, e.g. for 2,4,6-trichloroanisole in a range of 5-10 ppt in air (Staples 2000). On the basis of currently available toxicological data, exposure of the occupants to the concentrations of chloroanisoles measured is not associated with a health risk. No correlation could be observed between concentrations of chloroanisoles and PCP in house dust and indoor air. However, chloroanisoles are good indicators for possible PCP-treatment of wood in frame houses and their detection should initiate investigations on PCP contamination. Research is continuing to identify the microorganisms involved and to devise a remediation procedure for affected houses.  相似文献   
692.
693.
694.
695.
BACKGROUND: Methyl tertiary butyl ether (MTBE) is the second most highly produced industrial chemical in the US and a frequent groundwater pollutant. At the same time, MTBE is quite persistent to biotic and abiotic decomposition. The goal of this study was to find plant species that could degrade MTBE and might be used in phytoremediation. METHODS: Excised roots and leaves (0.3 g) from more than 24 Danish plant species out of 15 families were kept in glass vessels with 25 ml spiked aqueous solution for 2 to 4 days. MTBE concentrations were 1 to 5 mg/L. Samples were taken directly from the solution with a needle and injected to a purge and trap unit. MTBE and the main metabolite, TBA, were measured by GC/FID. RESULTS AND DISCUSSION: Solutions with roots of poplar (Populus robusta) and a willow hybrid (Salix viminalis x schwerinii) produced TBA in trace amounts, probably stemming from bacteria. Significant MTBE reduction (> 10%) was not observed in any of the tests. Leaves from none of the species (trees, grasses and herbs) reduced the concentration of MTBE in the solution and no TBA, nor any other known metabolite of MTBE, was detected. CONCLUSION: It was not possible to find plants capable of efficiently degrading MTBE. This gives rise to the conclusion that plants probably cannot degrade MTBE at all, or only very slowly. RECOMMENDATIONS AND OUTLOOK: For phytoremediation projects, this has, as consequence, that the volatilization by plants (except with genetically engineered plants) is the only relevant removal process for MTBE. For risk assessment of MTBE, degradation by the plant empire is not a relevant sink process.  相似文献   
696.
697.
Incomplete nitrification was studied in a completely and partially submerged rotating biological contactor (RBC). In a partially submerged RBC without additional aeration, 50 to 90% nitrite accumulation (alpha) was achieved at rotation speeds (omega) of 2 to 18 min(-1). In a completely submerged RBC operating during 80 days, a higher alpha of 96% was achieved at omega = 2 min(-1). Incomplete nitrification in a completely submerged RBC at oxygen concentrations of 1.5 to 6.8 mg O2/L indicated that the mass transfer of oxygen is rate-limiting. Modeling of the completely submerged RBC predicts that the oxygen profile will not penetrate the biofilm more than 30 microm, thereby strongly limiting the nitrite-oxidizer growth and causing high nitrite accumulation. Molecular analysis (i.e., fluorescence in situ hybridization) indicated that the nitrite-oxidizers are superficially located (<200 microm) and that the ammonia-oxidizers comprise up to approximately 800 microm of the biofilm.  相似文献   
698.
699.
BACKGROUND: Taiwan's geography and limited stock of sandstone have caused sandstone resources to gradually decline to the point of exhaustion after long-term excavation. Moreover, the Taiwanese government has continuously increased the amount of land area near rivers that cannot be excavated to facilitate riverbed remediation and promote conservation of water resources. Accordingly, predicting and managing the annual production of construction aggregates in future construction projects, and dealing appropriately with some thorny problems, for instance, demand that excess supply, excessive excavation, unregulated excavation, and the consequent environmental damage, will significantly affect the efficient use of natural resources in a manner that accords with the national policy of Sustainable Development (SD). METHODS:. This study establishes an empirical model for forecasting the annual production of future construction aggregates using Artificial Neural Networks (ANN), based on 15 relevant socio-economic indicators, such as indicator of annual consumption of cement. A sensitivity analysis is then performed on these indicators. RESULTS AND DISCUSSION: This work applies ANN to estimate the annual production of construction aggregates; the estimates, the verification of the model and the sensitivity analysis are all acceptable. Furthermore, sensitivity analysis results indicate that the annual consumption of cement is the indicator that most strongly influences the production of construction aggregates, as well as whether construction waste can be recycled and steel structures can be used in buildings, helping to reduce the future production of construction aggregates in Taiwan. CONCLUSIONS: The elaborate prediction methodology presented in this study avoids some of the weaknesses or limitations of conventional linear statistics, linear programming or system dynamics. Additionally, the results not only provide a short-term prediction of the production of construction aggregates in Taiwan, but also provide a viable and flexible means of verifying quality certification of the production data of construction aggregates in the future by incorporating those relevant socio-economic indicators. RECOMMENDATIONS AND OUTLOOK: The continuity and quality of the database of relevant indicators used in this study should be closely scrutinized in order to ensure the SD means of exploiting resources.  相似文献   
700.
GOAL, SCOPE AND BACKGROUND: This study was carried out to investigate the effect of olive oil on the photodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in contaminated sawmill soil. Previous studies had shown that the solubility of PCDD/Fs in olive oil is high and a rapid photodegradation of PCDD/Fs takes place in olive oil when irradiated with ultraviolet (blacklight) lamps. The efficiency of this treatment method was evaluated under more practical conditions. These included the use of sunlight irradiation and a lower-grade olive oil, without a preliminary extraction of soil with olive oil. METHODS: A 1-cm layer of contaminated sawmill soil was blended with 20 weight-% of olive oil and exposed to sunlight for four weeks. In another experiment, a new dose of olive oil was added at the middle of the exposure period. The PCDD/F concentrations of the soils were monitored periodically. RESULTS AND DISCUSSION: A reduction in the concentration of 2,3,7,8-chlorinated PCDD/Fs by 59% and in WHO-TEQ in contaminated sawmill soil by 48% was attained after blending the soil with two doses (20 + 20%) of olive oil and exposing the mixture to sunlight for four weeks. Photodegradation with only one dose of olive oil was less efficient. This suggests that periodical additions of olive oil would be needed to maintain a proper degradation rate. After the oil additions, the WHO-TEQ content of the soil declined with first order reaction half-lives of 19.2 to 19.7 d. The overall half-life during the four-week treatment, however, was 30 d. CONCLUSION: A significant reduction in the PCDD/F concentration of aged sawmill soil can be achieved with a relatively simple olive oil-sunlight treatment. RECOMMENDATIONS AND OUTLOOK: Some theoretical and technological questions need to be solved before using the investigated soil decontamination method in larger-scale applications. The functions of vegetable oils in photodegradation processes should be studied in more detail. The amount of oil that is needed for a proper solubilisation and photodegradation of PCDD/Fs should be minimised. Moreover, special care should be taken to prevent mobilisation of PCDD/Fs to the surrounding environment and to avoid leaving bioavailable residuals of PCDD/Fs in soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号