首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12854篇
  免费   144篇
  国内免费   1243篇
安全科学   203篇
废物处理   964篇
环保管理   1425篇
综合类   2815篇
基础理论   3642篇
污染及防治   2891篇
评价与监测   1121篇
社会与环境   1053篇
灾害及防治   127篇
  2024年   3篇
  2023年   37篇
  2022年   129篇
  2021年   116篇
  2020年   103篇
  2019年   79篇
  2018年   1555篇
  2017年   1500篇
  2016年   1344篇
  2015年   359篇
  2014年   239篇
  2013年   310篇
  2012年   739篇
  2011年   1614篇
  2010年   890篇
  2009年   818篇
  2008年   1106篇
  2007年   1428篇
  2006年   168篇
  2005年   133篇
  2004年   134篇
  2003年   181篇
  2002年   206篇
  2001年   122篇
  2000年   124篇
  1999年   117篇
  1998年   119篇
  1997年   111篇
  1996年   114篇
  1995年   76篇
  1994年   67篇
  1993年   57篇
  1992年   44篇
  1991年   20篇
  1990年   16篇
  1989年   13篇
  1988年   10篇
  1987年   7篇
  1986年   2篇
  1985年   5篇
  1984年   11篇
  1983年   11篇
  1982年   2篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
841.
Tang XY  Zhu YG  Shan XQ  McLaren R  Duan J 《Chemosphere》2007,66(7):1183-1190
Ingestion of contaminated soil has been recognized as an important exposure pathway of arsenic for humans, especially for children through outdoor hand-to-mouth activities. An improved sequential extraction procedure was employed in an attempt to reveal the relationship between bioaccessibility and fractionation of As in five soils from China. Arsenic bioaccessibility in acidic ( approximately pH 4.5) soils reached approximately stable levels after a sharp decline within one week of ageing. In contrast, As bioaccessibility in higher pH (>6.0) soils was found to be significantly higher and took two weeks of ageing to reach stable levels. The artificially added As was more labile than indigenous As. The main proportions of added As were found in the specifically sorbed and amorphous and poorly-crystalline hydrous Fe/Al oxide-bound fractions. Correlation analysis shows that the non-specifically and specifically sorbed As are likely to constitute the main proportion of bioaccessible soil As. The soil content of amorphous and crystalline Fe/Al oxides and soil pH appear to be the key factors controlling, not only the time needed to reach a steady state, but also the magnitude of the bioaccessibility of As added to the soils.  相似文献   
842.
The sorption of surfactants onto soils has a significant effect on the performance of surfactant enhanced desorption. In this study, the efficiency of surfactants in enhancing desorption for polycyclic aromatic hydrocarbons (PAHs) contaminated soils relative to water was evaluated with a term of relative efficiency coefficient (REC). Since the sorption of surfactants onto soils, surfactants only enhanced PAH desorption when REC values were larger than 1 and the added surfactant concentration was greater than the corresponding critical enhance desorption concentration (CEDC), which was defined as the corresponding surfactant concentration with REC=1. A model was utilized to describe and predict the REC and CEDC values for PAH desorption. The model and experimental results indicated that the efficiency of surfactants in enhancing PAH desorption showed strong dependence on the soil composition, surfactant structure and PAH properties. These results are of practical interest for the selection of surfactant to optimize soil remediation technologies.  相似文献   
843.
The impact of sewage irrigation on the uptake and translocation of mercury (Hg) in corn plants (Zea mays) was investigated. Corn plants were harvested the same day from two nearby fields in suburban Beijing, one irrigated historically with sewage effluent, and one irrigated solely with groundwater. Hg content was analyzed in the soil, roots and stems, while percent moisture and soil organic content were analyzed in the soil samples. The concentration of Hg in the soil and roots, and the soil organic content were not significantly different between the two fields, despite the historic practice of sewage irrigation. Hg content in roots was positively correlated with soil Hg concentration (r=0.95, n=6). The transfer coefficients between roots and stems were significantly higher in the control site (control: 2.06, sewage-irrigated: 0.44, p<0.05), indicating that the barrier effect of the roots was not consistent between the two fields.  相似文献   
844.
A study of climate change and anthropogenic impacts in West Africa   总被引:3,自引:0,他引:3  
BACKGROUND, AIM AND SCOPE: During the last decades ecological conditions in West Africa have dramatically changed. Very evident is the climate change, which has resulted in a southward shift of the climate zones, e.g. a spread of the desert (Sahara) into the Sahelian zone. After the drought period of the early 1970s and 1980s, livestock density increased resulting in an intensification of grazing pressure. This anthropogenous phenomenon leads to similar landscape changes as those caused by the climate. Only very few investigations exist on vegetation dynamics, climate changes and land use changes for the Sudanian zone. The paper presents data on changes of precipitation, of land use, of the geographical range of species, and of the composition of the flora, which have to be regarded as proofs of the sahelisation of large areas of the Sudanian zone. MATERIALS AND METHODS: Area of investigation: Burkina Faso. Precipitation data analysis: precipitation data from 67 stations; time series analysis and geo-statistical spatial interpolation. Analysis of land use change: Landsat satellite MSS and ETM+ data, acquired for two different dates between 1972 and 2001 analyzed by the software ERDAS/IMAGINE version 8.6 and ArcView 3.2 with the Spatial Analyst extension. Intensive ground truthing (160 training areas). Inventory of the flora: based on the data of the Herbarium Senckenbergianum (FR) in Frankfurt, Germany, and of the herbarium of the university of Ouagadougou (OUA), Burkina Faso, as well as on various investigations on the vegetation of Burkina Faso carried out in the years 1990 to 2005 by the team of the senior author. Life form analysis of the flora: based on the inventory of permanent plots. RESULTS AND DISCUSSION: Precipitation: Remarkable latitudinal shift of isohyets towards the South translates to a general reduction of average rainfall in great parts of the country. The last decade (1990-1999) shows some improvement, however, the more humid conditions of the 1950's and 1960's are not yet established again. Landcover change: In the study region the extent of arable fields and young fallows increased during the last 30 years from 580 km(2) in 1972 to 2870 km(2) in 2001. This means an average land cover conversion rate of 0.9% per year for the 6 departments considered. Change of the distribution of Sahelian and Sudanian species: Several species, mentioned in older literature as strictly Sahelian, today also occur in the Sudanian zone. Parallel to the spread of former strictly Sahelian species into the Sudanian zone, some former Sahelo-Sudanian species have withdrawn from the Sahel. Changes of the life form spectra of the flora: Considering their life form spectra, the flora of heavily grazed and of protected areas in the Sudanian zone show great differences. On areas intensively grazed the percentage of therophytes is evidently higher than on protected areas. Just the opposite is true for the phanerophytes. Their percentage is higher on the protected area than on the grazed zones. At the first glance, it is obvious to link the changes in flora and vegetation with the climate changes that have occurred during the last five decades (decrease of annual precipitation). However, not only climatic conditions have changed, but also population has increased, the percentage of land intensively used for agriculture and pasturing has increased and the time for soil regeneration today is much shorter than it was some decades ago. Thus, the landscape of the Sudanian zone has become a more Sahelian character. A comparison of the flora of an intensively used area of the Sudanian zone with that of a protected area shows a remarkable change in the life form spectra. The spectrum of the intensively used area is almost identical with that of the typical Sahelian flora. This comparison shows that the anthropogenic influence plays a greater role in the sahelisation of the Sudanian zone than the climate change. CONCLUSION: Climate change and anthropogenic influence both, lead to a sahelisation of landscape and flora. Thus in many parts of the Sudanian zone of West Africa sahelisation phenomena will remain and even increase independently from the reestablishment of the more humid climate conditions of the 1950ies. RECOMMENDATIONS AND PERSPECTIVES: In order to maintain some parts of the characteristic Sudanian landscape with its characteristic flora and vegetation, the number and size of protected areas should be augmented. For all protected areas it has to be ensured, that protection is reality, i.e. respected an understood by local people, not only fiction. As long as the enlargement of intensively used areas continues the sahelisation of flora, vegetation and landscape will continue too.  相似文献   
845.
GOAL, SCOPE AND BACKGROUND: Pentachlorophenol (PCP) is the second highest volume pesticide used in the United States. It is a mutagenic compound whose exposure poses significant health effects, One of the most desirable, environmentally friendly treatment methods is bioremediation. For soil-based contamination, the effectiveness of bioremediation will also be affected by the presence of an active indigenous population, sorption of the contaminant onto the soil, and environmental parameters. METHODS: Two pure strains and their mixed culture were used to evaluate PCP biodegradation in two different field soils, Columbia (CO) and New Mexico (NM). Biostimulation of the indigenous microbes was evaluated by adding nutrients. The efficiency of adding bacteria strains (bioaugmentation) for degrading PCP was determined with Arthrobacter sp., Flavobacterium sp. and a 50:50 mixture of the two bacteria strains. RESULTS: In CO soil, only 24%, 12% and 25% of the initial PCP concentration were degraded by Flavobacterium sp., Arthrobacter sp. and mixed culture, respectively. Arthrobacter sp. was used in NM soil with two initial concentrations and achieved degradation efficiencies of 57% and 61% for 361 and 95 mg kg- concentrations, respectively. Discussion. Analysis via statistical methods showed that the bacteria had different efficiencies on PCP degradation in each soil. 2 CONCLUSIONS: All bacteria catalyzed a higher PCP degradation when present in NM soil. Second, Flavobacterium sp. degraded more PCP than Arthrobacter sp. in CO soil. The mixed culture achieved the highest degradation efficiency regardless of the initial concentration or soil origin. RECOMMENDATIONS AND PERSPECTIVES: The effect of the soil properties, such as the soil organic matter (SOM) on PCP biodegradation should be investigated. Future work can also investigate the effect of aging time on biodegradation.  相似文献   
846.
Zhu L  Ma B  Zhang L  Zhang L 《Chemosphere》2007,69(10):1579-1585
In November 2005, an explosion occurred at a petrochemical plant of the Jilin Petrochemical Corporation in Jilin Province, China. A nearby water body was seriously polluted with a large spill of toxic substances made up of a mixture of benzene, aniline, and nitrobenzene (NB). To understand the long term impact of NB on public health and ecosystem around the Songhua River, it was necessary to investigate its fate in the environment. In this study, a microcosm was used to mimic the polluted water system and to study the transport and fate of NB in the river water body. The volatility and biodegradation of NB was investigated and a Markov model was applied to predict the fate of NB in the environment. The simulated results matched very well with the results obtained from the microcosm experiment. The model indicated that at room temperature and after around 500 h, there was only residual NB in the water and sediment. Most of the NB (around 82%) evaporated into the air and 18% was degraded by microorganisms.  相似文献   
847.
848.
Chen A  Lin C  Lu W  Wu Y  Ma Y  Li J  Zhu L 《Chemosphere》2007,70(2):248-255
An investigation into well water quality was carried out in a rural area subject to irrigation with acidic mine water from the Guangdong Dabaoshan Mine, southern China. The results of water pH measurements from 112 wells in two different seasons suggest that the well water has been contaminated to varying degrees in the investigated Shangba floodplain (approximately 11km south of the Guangdong Dabaoshan Mine). There is a trend that well water pH increased southwards, suggesting that the impacts of acidic irrigation water on groundwater decreased with increasing distance to the entry point of acidic irrigation water. Water quality monitoring results of the selected wells show that Cu and Cd in the water exceeded the limits set in the Chinese National Standards for Drinking Water (GB 5749-85) for the wells close to the irrigation water source. If the World Health Organization (WHO) standard was considered, Cd in some wells was almost 10 times as high as the WHO guideline value (0.003mg l(-1)). Water collected from the location closest to the acidic irrigation water source was acutely toxic to the test organism (Daphnia carinata) even after 51 time dilution. It is likely that the extremely high mortality rate of the local population reported for the study area is at least partly related to the high levels of heavy metals, particularly Cd in the drinking well water.  相似文献   
849.
Bioremediation process on Brazil shoreline   总被引:1,自引:0,他引:1  
GOAL, SCOPE AND BACKGROUND: Bioremediation technique can be considered a promising alternative to clean oil spills using microbial processes to reduce the concentration and/or the toxicity of pollutants. To understand the importance of this work we must know that there is only little research performed to date using bioremediation techniques to clean oil spills in tropical countries. So, the main objective of this work is to analyze the behavior of a laboratory's bioremediation test using nutrients on coastal sediments. METHODS: The bioremediation process is followed through geochemical analysis during the tests. This organic material is analyzed by medium pressure liquid chromatography (MPLC), gas chromatography/flame ionization detection (GC/FID) and gas chromatography/ mass spectrometry. By microbial counting, the number of total bacteria and degrading bacteria is determined during the experiments, in order to confirm the effectiveness of the bioremediation process. The seawater obtained throughout the bioremediation process is analyzed for nutrients grade (phosphate and ammonium ions) and also for its toxicity (Microtox tests) due the presence of hydrocarbons and fertilizer. RESULTS: The results from the geochemical analyses of the oil show a relative decrease in the saturated hydrocarbon fraction that is compensated by a relative enrichment on polar compounds. It's confirmed by the fingerprint evaluation where it is possible to see a complete reduction of the normal alkanes followed by isoprenoids. Seawater analysis done by toxicity and nutrients analysis, such as microbial counting (total and degrading bacteria), confirm the fertilizer effectiveness during the bioremediation process. DISCUSSION: Results from simulating test using NPK, a low-price plant fertilizer, suggest that it's able to stimulate the degradation process. Results from medium pressure liquid chromatography (MPLC), done at two different depths (surface and subsurface), show different behavior during the biodegradation process where the later is seen to be more susceptible to microbial attack. Data from bioremediation unit shows a bigger reduction of the saturated fraction, followed by some smaller reduction of aromatic fractions, compensated by a relative increase from polar compounds (NSO). n-C17/pristane, n-C18/ fitane and pristane/fitane rates show constant values for the unity control, different from bioremediation samples which have a significant reduction, especially on subsurface areas, where a strong fall in the rates, seen to be reduced to zero over twenty days, had occurred during the first ten days. However, sample surfaces are reduced to zero in thirty days of experiments, proving that biodegradation is better on subsurfaces. Gaseous chromatography/mass spectrometry (CG/MS) analysis shows constant values to cyclic biomarker rates and aromatic compounds, suggesting that the biodegradation process is not strong enough to reduce these composites. Microbial analysis shows a reduction on heterotrophic (total bacteria) number from control unit, probably because the bacteria uses the spill oil like carbon source and energy. However, the number increases on bioremediation unit, because it uses NPK like a biostimulator. The hydrocarbonoclastic number isn't enough on the first moment, but it's detected after 30 days and quantified in all units, showing big values especially in bioremediation. Toxicity tests confirm that NPK fertilizer does not intoxicate the shoreline during the application of the bioremediation technique. Some nutrient concentration shows high values of ammonium and phosphate per bioremediation unit, reducing by the end of the experiment. CONCLUSIONS: Results reached the goal, finding a proper nutrient (NPK fertilizer) to stimulate the biodegradation process, growing bacteria responsible for reducing impact-contaminated coast ambient by oil spills. Chemical analysis of oil shows a reduction in the saturated fraction with a relative enrichment in polar composites (NSO) and the aromatic fraction from oil remaining constant. Subsurface samples show more biodegradation than surface samples, probably because the first one has higher humidity. Linear alcanes are more biodegraded than isoprenoids, confirming the biodegradation susceptibility order. Saturated cyclic biomarkers and aromatic compounds show constant behavior maybe because the nutrients or time was not enough for microorganismic attack. Fertilizer does not demonstrate any toxic effects in local biota so that it does not compromise the technique applicability and the environment is not saturated by nutrients during the simulation, especially since the coastal environment is an open system affected daily by tides. Therefore, bioremediation tests can be classified as moderate, reaching level 5 in the classification scale by Peters & Moldowan (1993). RECOMMENDATIONS AND PERSPECTIVES: The use of marine environment by the petroleum industry on exploration, production and transportation operation, transform this oil to become the most important pollutant in the oceans. Bioremediation is an important technique used to clean spilled oil impacting on shorelines, accelerating the biodegradation process by using fertilizer growing the microorganisms responsible for decontaminating the environment. We recommend confirming the efficiency of NPK nutrient used on bioremediation simulating experiments on beaches, while monitoring the chemical changes long-term. NPK fertilizer can be used to stimulate the biodegradation process on shoreline impacted by spilled oil.  相似文献   
850.
厌氧-好氧工艺处理制药废水的中试研究   总被引:3,自引:0,他引:3  
将由厌氧折流板反应器(ABR)、移动床生物膜反应器(MBBR)和膜生物反应器(MBR)组合而成的厌氧-好氧工艺用于处理制药废水的中试研究.试验结果表明,当原水SS平均值为1000 mg/L,COD为10 000 mg/L,NH3-N为500 mg/L时,出水浊度、COD和NH3-N分别为3 NTU、500 mg/L以及10 mg/L以下,去除率分别为98%、95%和98%以上.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号