首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1179篇
  免费   7篇
  国内免费   14篇
安全科学   28篇
废物处理   78篇
环保管理   98篇
综合类   126篇
基础理论   250篇
环境理论   1篇
污染及防治   416篇
评价与监测   129篇
社会与环境   71篇
灾害及防治   3篇
  2023年   17篇
  2022年   43篇
  2021年   71篇
  2020年   33篇
  2019年   20篇
  2018年   48篇
  2017年   59篇
  2016年   70篇
  2015年   39篇
  2014年   62篇
  2013年   105篇
  2012年   64篇
  2011年   90篇
  2010年   67篇
  2009年   56篇
  2008年   54篇
  2007年   58篇
  2006年   46篇
  2005年   36篇
  2004年   25篇
  2003年   25篇
  2002年   26篇
  2001年   12篇
  2000年   7篇
  1999年   8篇
  1998年   6篇
  1997年   4篇
  1996年   9篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1968年   1篇
  1967年   1篇
  1963年   1篇
  1915年   1篇
排序方式: 共有1200条查询结果,搜索用时 860 毫秒
91.
The fate of excess nitrogen in estuaries is determined by the microbial-driven nitrogen cycle, being denitrification a key process since it definitely removes fixed nitrogen as N2. However, estuaries receive and retain metals, which may negatively affect this process efficiency. In this study, we evaluated the role of salt marsh plants in mediating cadmium (Cd) impact on microbial denitrification process. Juncus maritimus and Phragmites australis from an estuary were collected together with the sediment involving their roots, each placed in vessels and maintained in a greenhouse, exposed to natural light, with tides simulation. Similar non-vegetated sediment vessels were prepared. After 3 weeks of accommodation, nine vessels (three per plant species plus three non-vegetated) were doped with 20 mg/L Cd2+ saline solution, nine vessels were doped with 2 mg/L Cd2+ saline solution and nine vessels were left undoped. After 10 weeks, vessels were dissembled and denitrification potential was measured in sediment slurries. Results revealed that the addition of Cd did not cause an effect on the denitrification process in non-vegetated sediment but had a clear stimulation in colonized ones (39 % for P. australis and 36 % for J. maritimus). In addition, this increase on denitrification rates was followed by a decrease on N2O emissions and on N2O/N2 ratios in both J. maritimus and P. australis sediments, increasing the efficiency of the N2O step of denitrification pathway. Therefore, our results suggested that the presence of salt marsh plants functioned as key mediators on the degree of Cd impact on microbial denitrification.  相似文献   
92.
Abstract

The optical absorption coefficient, particulate matter with an aerodynamic diameter <2.5 μm, and elemental carbon (EC) have been measured simultaneously during winter and spring of 2000 in the western part of Santiago, Chile (Pudahuel district). The optical measurements were carried out with a low-cost instrument recently developed at the University of Santiago. From the data, a site-specific mass absorption coefficient of 4.45 ± 0.01 m2/g has been found for EC. In addition, a mass absorption coefficient of 1.02 ± 0.03 m2/g has been obtained for PM2.5. These coefficients can be used during the colder months (May-August) to obtain EC concentration or PM2.5 from a measurement of the light absorption coefficient (σa). The high correlation that has been found between these variables indicates that σa is a good indicator of the degree of contamination of urbanized areas.

The data also show an increase in PM2.5 and EC concentration during winter and an increase in the ratio of EC to PM2.5. When the EC/PM2.5 ratio is calculated during rush hour (7:00 a.m.-11:00 a.m.) and during part of the night (9:00 p.m.-2:00 a.m.), it is found that the increase is caused by higher concentration levels of EC at night. These results suggest that the rise in the EC concentration is caused by emissions from heating and air mass transport of pollution from other parts of the city, while traffic contribution remains approximately constant.  相似文献   
93.
Tin or stannous (Sn2+) compounds are used as catalysts, stabilizers in plastic industries, wood preservatives, agricultural biocides and nuclear medicine. In order to verify the Sn2+ up-take and toxicity in yeast cells we utilized a multi-elemental analysis known as particle-induced X-ray emission (PIXE) along with cell survival assays and quantitative real-time PCR. The detection of Sn2+ by PIXE was possible only in yeast cells in stationary phase of growth (STAT cells) that survive at 25 mM Sn2+ concentration. Yeast cells in exponential phase of growth (LOG cells) tolerate only micro-molar Sn2+ concentrations that result in intracellular concentration below of the method detection limit. Our PIXE analysis showed that STAT XV185-14c yeast cells demonstrate a significant loss of intracellular elements such as Mg, Zn, S, Fe and an increase in P levels after 1 h exposure to SnCl2. The survival assay showed enhanced tolerance of LOG yeast cells lacking the low-affinity iron and zinc transporters to stannous treatment, suggesting the possible involvement in Sn2+ uptake. Moreover, our qRT-PCR data showed that Sn2+ treatment could generate reactive oxygen species as it induces activation of many stress-response genes, including SOD1, YAP1, and APN1.  相似文献   
94.
The aim of this work is to assess the potential ecotoxicological effects of contaminated sediments treated with mineral additives. The Microtox solid phase test was used to evaluate the effect of mineral additives on the toxicity of sediment suspensions. Four Mediterranean port sediments were studied after dredging and bioremediation: Sample A from navy harbor, sample B from commercial port and samples C and D from pleasure ports. Sediment samples were stabilized with three mineral additives: hematite, zero-valent iron and zeolite. Results show that all studied mineral additives can act as stabilizer agent in highly contaminated sediments (A and C) by decreasing dissolved metal concentrations and sediment toxicity level. On the contrary, for the less contaminated samples (B and D) hematite and zeolite can provoke toxic effect towards Vibrio fischeri since additive particles can favor bacteria retention and decrease bioluminescence emission.  相似文献   
95.
The increasing concentrations impact (0.02, 0.2 and 2 mg L−1) of a Sterol Biosynthesis Inhibitor (SBI) fungicide, propiconazole, was evaluated on development and sterol metabolism of two non-target organisms: mycorrhizal or non-mycorrhizal transformed chicory roots and the arbuscular mycorrhizal fungus (AMF) Glomus irregulare using monoxenic cultures. In this work, we provide the first evidence of a direct impact of propiconazole on the AMF by disturbing its sterol metabolism. A significant decrease in end-products sterols contents (24-methylcholesterol and in 24-ethylcholesterol) was observed concomitantly to a 24-methylenedihydrolanosterol accumulation indicating the inhibition of a key enzyme in sterol biosynthesis pathway, the sterol 14α-demethylase like in phytopathogenic fungi. A decrease in end-product sterol contents in propiconazole-treated roots was also observed suggesting a slowing down of the sterol metabolism in plant. Taken together, our findings suggest that the inhibition of the both AM symbiotic partners development by propiconazole results from their sterol metabolism alterations.  相似文献   
96.
Previous studies have demonstrated that the commercial feed of aquacultured fish contains trace amounts of toxic and essential metals which can accumulate in tissues and finally be ingested by consumers. Recently rising temperatures, associated to the global warming phenomenon, have been reported as a factor to be taken into consideration in ecotoxicology, since temperature-dependent alterations in bioavailability, toxicokinetics and biotransformation rates can be expected. Sparus aurata were kept at 22 °C, 27 °C and 30 °C for 3 months in order to determine the temperature effect on metallothionein induction and metal bioaccumulation from a non-experimentally contaminated commercial feed. A significant temperature-dependent accumulation of cadmium (Cd), copper (Cu), mercury (Hg), zinc (Zn), lead (Pb) and iron (Fe) was found in liver, together with that of manganese (Mn), Fe and Zn in muscle. Hg presented the highest bioaccumulation factor, and essential metal homeostasis was disturbed in both tissues at warm temperatures. An enhancement of hepatic metallothionein induction was found in fish exposed to the highest temperature.  相似文献   
97.
To evaluate the genotoxic risk that contaminated sediment could constitute for benthic organisms, three contaminated (VA, VC and VN) and one uncontaminated (RN) sediment samples were collected in the Berre lagoon (France). Potentially bioavailable contaminants in sediments were obtained using sediment extraction with synthetic seawater adjusted to pH 4 or pH 6, simulating the range of pH prevailing in the digestive tract of benthic organisms. The genotoxic activities of these extracts were evaluated by three short-term bioassays: the Salmonella mutagenicity test using the Salmonella typhimurium strain TA102, the alkaline comet assay and the micronucleus assay on the Chinese Hamster Ovary cells CHO-K1. Results of the Salmonella mutagenicity assay detected a mutagenic response for RN extract at pH 6, and for VA extract at pH 4. Results of the comet and micronucleus assays detected low genotoxic/clastogenic activities for VA and VC extracts at pH 6 and higher activities for RN, VA and VC extracts at pH 4. To identify if metals (Al, Fe, Mn, As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn) were involved in these genotoxic activities, their concentrations were determined in the extracts, and their speciation was assessed by thermodynamic calculations. Results showed that extracts from sites VA, VC and VN generally presented the highest trace metal contents for both extractants, while the site RN presented lower trace metal contents but the highest Fe and Mn contents. Thermodynamic calculations indicated that Fe, Mn, As and in a lower extend Co, Ni and Zn were mainly present under free forms in extracts, and were consequently, more likely able to induce a genotoxic effect. Results globally showed no correspondence between free metal contents and genotoxic activities. They suggested that these positive results could be due to uncharacterized compounds, acting as direct genotoxic agents or enhancing the genotoxic properties of analyzed metals.  相似文献   
98.
Two assays were designed to obtain information about the influence of redox potential variations on barium mobility and bioavailability in soil. One assay was undertaken in leaching columns, and the other was conducted in pots cultivated with rice (Oryza sativa) using soil samples collected from the surface of Gleysol in both assays. Three doses of barium (100,300 mg kg−1 and 3000 mg kg−1-soil dry weight) and two redox potential values (oxidizing and reducing) were evaluated. During the incubation period, the redox potential (Eh) was monitored in columns and pots until values of −250 mV were reached. After the incubation period, geochemical partitioning was conducted on the barium using the European Communities Bureau of Reference (BCR) method. Rainfall of 200 mm d−1 was simulated in the columns and in the planting of rice seedlings in the pots. The results of the geochemical partitioning demonstrated that the condition of reduction favors increased barium concentrations in the more labile chemical forms and decreased levels in the chemical forms related to oxides. The highest barium concentrations in leached extracts (3.36 mg L−1) were observed at the highest dose and condition of reduction at approximately five times above the drinking water standard. The high concentrations of barium in the soil did not affect plant dry matter production. The highest levels and accumulation of barium in roots, leaves, and grains of rice were found at the highest dose and condition of reduction. These results demonstrate that reduction leads to solubilization of barium sulfate, thereby favoring greater mobility and bioavailability of this element.  相似文献   
99.

Introduction  

We report on the analysis of 4,4′-dichlorodiphenyltrichloroethane (4,4′-DDT) and its metabolites in thatch and branch samples constituting the wall materials of dwellings from South African subtropical areas. This approach was used to assess the exposure to DDT in the residents of the dwellings after indoor residual spraying (IRS) following recommended sanitation practices against malaria vectors.  相似文献   
100.
Volatile organic compounds (VOCs) have been the focus of interest to understand atmospheric processes and their consequences in formation of ozone or aerosol particles; therefore, VOCs contribute to climate change. In this study, biogenic VOCs (BVOCs) emitted from Fagus sylvatica L. trees were measured in a dynamic enclosure system. In total 18 compounds were identified: 11 monoterpenes (MT), an oxygenated MT, a homoterpene (C14H18), 3 sesquiterpenes (SQT), isoprene and methyl salicylate. The frequency distribution of the compounds was tested to determine a relation with the presence of the aphid Phyllaphis fagi L. It was found that linalool, (E)-β-ocimene, α-farnesene and a homoterpene identified as (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), were present in significantly more samples when infection was present on the trees. The observed emission spectrum from F. sylvatica L. shifted from MT to linalool, α-farnesene, (E)-β-ocimene and DMNT due to the aphid infection. Sabinene was quantitatively the most prevalent compound in both, non-infected and infected samples. In the presence of aphids α-farnesene and linalool became the second and third most important BVOC emitted. According to our investigation, the emission fingerprint is expected to be more complex than commonly presumed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号