首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29025篇
  免费   198篇
  国内免费   319篇
安全科学   493篇
废物处理   1648篇
环保管理   3345篇
综合类   4101篇
基础理论   8291篇
环境理论   6篇
污染及防治   6725篇
评价与监测   2319篇
社会与环境   2500篇
灾害及防治   114篇
  2022年   190篇
  2021年   154篇
  2020年   128篇
  2019年   152篇
  2018年   1819篇
  2017年   1697篇
  2016年   1584篇
  2015年   473篇
  2014年   554篇
  2013年   1490篇
  2012年   1041篇
  2011年   2204篇
  2010年   1511篇
  2009年   1388篇
  2008年   1758篇
  2007年   2222篇
  2006年   757篇
  2005年   717篇
  2004年   699篇
  2003年   765篇
  2002年   765篇
  2001年   871篇
  2000年   616篇
  1999年   324篇
  1998年   237篇
  1997年   255篇
  1996年   235篇
  1995年   274篇
  1994年   276篇
  1993年   223篇
  1992年   227篇
  1991年   217篇
  1990年   226篇
  1989年   218篇
  1988年   171篇
  1987年   177篇
  1986年   169篇
  1985年   171篇
  1984年   180篇
  1983年   170篇
  1982年   144篇
  1981年   139篇
  1980年   129篇
  1979年   137篇
  1978年   111篇
  1977年   120篇
  1975年   99篇
  1974年   92篇
  1973年   104篇
  1972年   95篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.
Chitin has been produced from different sea waste sources including, molluscs (mussel and oyster shell), crustacean (prawn and crab) and fish scale (pang and silver scales) using deproteinization and demineralization as chemical methods. The conditions of chemical extraction process determine the quality of chitin. The obtained results revealed that, about 1 and 10% HCl and NaOH were adequate concentrations for deproteinization and demineralization process respectively. Chitin from oyster and crab shell waste had the highest yield of 69.65 and 60.00% while prawn, mussel shell, pang and silver scales had the lowest yield of 40.89, 35.03, 35.07 and 31.11% respectively. Chitin solubility is controlled by the quantity of protonated acetyl groups within the polymeric chain of the chitin backbone, thus on the percentage of acetylated and non-acetylated d-glucos-acetamide unit. Good solubility results were obtained in mussel, oyster and crab shells respectively. The chitin molecular weight characteristics and activity are controlled by the degree of acetylation (DA) and the distribution of acetyl group extending in the polymer chain. DA is determined by acid-base titration methods and molecular weight determined by Brookfield viscometry. Both methods are found to be effective.  相似文献   
942.
Natural fibers are limited in their use as reinforcement to commodity polymers. They cannot be used to reinforce engineering polymers due to their low thermal stability at high processing temperatures. This study presents an approach to successfully reinforce polyamides using a derivative of natural fibers as reinforcement without the effects of thermal degradation during melt processing. Biocarbon from miscanthus fibers was used to reinforce polyamide 6 up to 40 wt%. At 40 wt% filler content, the tensile and flexural strengths increased by 19.6 and 47% respectively in comparison to the neat polyamide. The moduli were also increased by 31.5 and 63.7% respectively. A maximum increase in impact strength of 43.7% was achieved at 20 wt% biocarbon loading. The morphology of the tensile fractured samples showed stretched polyamide ligaments attached to the biocarbon particles, indicating the presence of interaction between filler and matrix. Interestingly, more bonded interfaces were observed between the polyamide and biocarbon particles with increasing biocarbon content possibly stemming from increased biocarbon surfaces with functional groups. These composites show great potential to substitute in part or whole, some particulate filled polyamides currently used in the automotive industry.  相似文献   
943.
Here, the influence of graphene as a coating on the biodegradation process for two different polymers is investigated, poly(butylene adipate-co-terephthalate) (PBAT) (biodegradable) and low-density polyethylene (LDPE) (non-biodegradable). Chemical vapor deposition graphene was transferred to the surface of two types of polymers using the Direct Dry Transfer technique. Polymer films, coated and uncoated with graphene, were buried in a maturated soil for up to 180 days. The films were analyzed before and after exposure to microorganisms in order to obtain information about the integrity of the graphene (Raman Spectroscopy), the biodegradation mechanism of the polymer (molecular weight and loss of weight), and surface changes of the films (atomic force microscopy and contact angle). The results prove that the graphene coating acted as a material to control the biodegradation process the PBAT underwent, while the LDPE covered by graphene only had changes in the surface properties of the film due to the accumulation of solid particles. Polymer films coated with graphene may allow the production of a material that can control the microbiological degradation, opening new possibilities in biodegradable polymer packaging. Regarding the possibility of graphene functionalization, the coating can also be selective for specific microorganisms attached to the surface.  相似文献   
944.
This work aimed to prepare biodegradable thermoplastic elastomers based on NR/LLDPE/TPS ternary simple blends to achieve some exclusive properties, i.e., good biodegradability in terms of water absorption and weight loss after burial, together with reasonable mechanical and thermal properties. A comparative study on biodegradability and other related properties of NR/LLDPE binary and NR/LLDPE/TPS ternary blends was performed. It was found that increasing the TPS proportion decreased storage modulus and complex viscosity. In addition, the size of dispersed TPS domains in the NR/LLDPE co-continuous matrix increased with TPS proportion, while the mechanical properties in terms of 100% moduli, tensile strength, elongation at break, and hardness decreased. This might be attributed to decreased interfacial adhesion with increasing size of TPS domains. Furthermore, increasing the TPS loading in the blend reduced the temperatures for 5 or 50% mass loss (T5 or T50) and the degradation temperature (T d ). However, the biodegradability improved, in terms of increased water absorption and weight loss after burial in soil, with the loading level of TPS.  相似文献   
945.
Poly(butylene succinate) (PBS) was melt blended with glycerol based polyesters (PGS) synthesized from pure and technical glycerol aiming to improve the impact strength of PBS. It was found that after addition of 30 wt% PGS to PBS its impact strength was significantly increased by 344% (from 31.9 to 110 J/m) and its elongation at break was maintained at 220%. Infrared spectra of the blends showed the presence of hydroxyl groups from the PGS phase suggesting that hydrogen bonding between the phases could be responsible for a good stress transfer and an efficient toughening in the PBS/PGS blends. Scanning electron microscopy imaging showed a good dispersion of PGS phase into PBS with a PGS particle size of 10 μm and less and no agglomeration. Addition of PGS to PBS was shown to be an effective strategy for improvement of PBS impact resistance without serious detrimental effects on its thermal and rheological properties.  相似文献   
946.
947.
Channa argus, a type of snakehead fish native to China, is a popular food fish in certain Asian countries but is a known destructive invasive species in the US. In this study, the two collagens, i.e. acid-soluble collagen (ASC) and pepsin-solubilized collagen (PSC), were obtained from C. argus skin. The yield of ASC was 28.0% and that of PSC was 16.8% on the dry bases. The collagens were identified as the collagen of type I by SDS–PAGE patterns. The Tds were approximately 27.0?°C. Similar ultraviolet spectra of both collagens were observed. Fourier Transform infrared spectra indicated PSC structure had a little change due to the loss of terminal domains by pepsin digestion. The results of XRD proved that the two collagens retained their helical structures. The results suggest that the collagens isolated from C. argus can potentially be alternative sources of vertebrate collagens for use in the food and other industries.  相似文献   
948.
A poly(lactic acid) (PLA)/polyamide 11 (PA11)/SiO2 composite was mixed from PLA, PA11, and nanosilica particles through twin-screw extrusion. The PLA/PA11/SiO2 composite was evaluated with tensile and Izod impact tests, light transmission and haze measurement, and isothermal and nonisothermal crystallization behavior determinations. The PLA/PA11/SiO2 (97.0/3.0) composite had approximately 10.8% less ultimate tensile strength than neat PLA, but it had greater ductility and approximately ninefold greater elongation at break. A dimple morphology was observed on the fractural surface of the PLA/PA11/SiO2 composite, indicating that the incorporation of PA11 and nanosilica particles increased the ductility of the PLA matrix. PLA with less than 3 wt% of PA11 and 0.5 phr of nanosilica particles had an Izod impact strength of 8.72 kJ/m2. PA11 and nanosilica particles effectively toughened this PLA polymer; they accelerated both isothermal and nonisothermal crystallization rates and increased the crystallinities of the resulting composites under isothermal and nonisothermal crystallization processes.  相似文献   
949.
This special issue of Ambio compiles a series of contributions made at the 8th International Phosphorus Workshop (IPW8), held in September 2016 in Rostock, Germany. The introducing overview article summarizes major published scientific findings in the time period from IPW7 (2015) until recently, including presentations from IPW8. The P issue was subdivided into four themes along the logical sequence of P utilization in production, environmental, and societal systems: (1) Sufficiency and efficiency of P utilization, especially in animal husbandry and crop production; (2) P recycling: technologies and product applications; (3) P fluxes and cycling in the environment; and (4) P governance. The latter two themes had separate sessions for the first time in the International Phosphorus Workshops series; thus, this overview presents a scene-setting rather than an overview of the latest research for these themes. In summary, this paper details new findings in agricultural and environmental P research, which indicate reduced P inputs, improved management options, and provide translations into governance options for a more sustainable P use.  相似文献   
950.
Our food and farming system is not socially, economically or ecologically sustainable. Many of the ills are a result of market competition driving specialization and linear production models, externalizing costs for environmental, social and cultural degradation. Some propose that market mechanisms should be used to correct this; improved consumer choice, internalization of costs and compensation to farmers for public goods. What we eat is determined by the path taken by our ancestors, by commercialization and fierce competition, fossil fuels and demographic development. Based on those, governments and the food industry are the choice architects who determine what we eat; consumer choice plays a marginal role. Using market mechanisms to internalize cost and compensate farmers for public goods has been proposed for decades but little progress has been made. There are also many practical, ethical and theoretical objections to such a system. The market is not a good master for a sustainable food system. Instead we need to find new ways of managing the food system based on food as a right and farming as a management system of the planet Earth. The solutions should be based on relocalization of food production and de-commodification of food and our symbionts, the plants and animals we eat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号