首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   1篇
安全科学   5篇
废物处理   13篇
环保管理   13篇
综合类   14篇
基础理论   33篇
污染及防治   40篇
评价与监测   13篇
社会与环境   10篇
  2023年   3篇
  2022年   10篇
  2021年   8篇
  2020年   2篇
  2019年   3篇
  2018年   9篇
  2017年   5篇
  2016年   9篇
  2015年   4篇
  2014年   8篇
  2013年   11篇
  2012年   12篇
  2011年   11篇
  2010年   10篇
  2009年   8篇
  2008年   4篇
  2007年   7篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
排序方式: 共有141条查询结果,搜索用时 78 毫秒
61.
ABSTRACT: A network flow algorithm has been developed for the optimization of real‐time operation of a multiple reservoir system. Two purposes have been considered in the operation: flood control and hydropower generation. A special network structure was developed which allows the consideration of river routing. A multiobjective formulation is utilized thus allowing generation of a non‐dominated curve. The effect of imperfect forecast on the performance of the real‐time operation model is also evaluated. An application is made to a subsystem of the Brazilian hydroelectric system, located in the Paranapanema river basin. In this case study, the model showed good performance under the largest flood of the historical records.  相似文献   
62.
In this paper, chemical and ecotoxicological data of leachates from bottom ashes collected in different Municipal Solid Waste Incinerators (MSWI) are shown. The bottom ashes were collected in Belgium (three incinerators--samples B1 to B3), France, Germany, Italy and United Kingdom (one incinerator in each country--samples F1, D1, I1 and UK1, respectively). Both chemical and ecotoxicological characterizations of leachates were done on the framework of the European Directive 91/689/EEC and the European Council Decision 94/904/EC. This work was carried out under the European project called Valomat, which was supported by the European Commission through Brite-Euram III program. Twenty-one inorganic parameters were analyzed. The ecotoxicological assays were done under standard laboratory conditions, using the bacterium Photobacterium phosphoreum, the freshwater alga Pseudokirchneriella subcapitata, the crustacean Daphnia magna and the vegetable Lactuca sativa. Chemical data varied from sample to sample. Similar results were obtained in biological assays. The samples can be classified as ecotoxic/hazardous according to the French proposal for a Criterion and Evaluation Methods of Waste Ecotoxicity (CEMWE) and the German regulation on Hazardous Waste Classification (HWC). However, samples B1, B2, B3 and D1 comply the maximum limits for direct valorization category defined in the French Classification of Bottom Ashes based on their Polluting Potential (CBAPP). Sample B1 presented the lowest level of ecotoxicity, being considered as the most interesting to be used in the development of new materials for civil engineering works.  相似文献   
63.
Aquatic macrophytes are a very important subject of study due to their capacity to restore polluted aquatic environments as they need high nutrient concentrations to develop. The present study aims to determine their temporal and physiological influence on the amount of total nitrogen, gross protein, P, Cu, Ni, Co, Cd, Pb and Cr absorbed by Eichhornia crassipes (water hyacinth) in the River Apodi/Mossoró, RN, Brazil, identifying viable possibilities for the use of cultivated biomass. Results obtained from the parameters analyzed show that these substances are impacted by the temporality and physiology of Eichhornia crassipes. Leaves showed higher crude protein and macronutrients, while the content of micronutrients and toxic elements was higher in roots. It could, therefore, be utilized to improve water quality in the River Apodi/Mossoró.  相似文献   
64.
Food and Environmental Virology - Hepatitis A virus (HAV) is the major cause of enterically transmitted infectious hepatitis. Between 2016 and 2017, the number of confirmed cases of hepatitis A...  相似文献   
65.
An advanced oxidation process comprising an iron-containing magnetic carbon xerogel (CX/Fe) and persulfate was tested for the degradation of propyl paraben (PP), a contaminant of emerging concern, in various water matrices. Moreover, the effect of 20 kHz ultrasound or light irradiation on process performance was evaluated. The pseudo-first order degradation rate of PP was found to increase with increasing SPS concentration (25–500 mg/L) and decreasing PP concentration (1690–420 μg/L) and solution pH (9–3). Furthermore, the effect of water matrix on kinetics was detrimental depending on the complexity (i.e., wastewater, river water, bottled water) and the concentration of matrix constituents (i.e., humic acid, chloride, bicarbonate). The simultaneous use of CX/Fe and ultrasound as persulfate activators resulted in a synergistic effect, with the level of synergy (between 35 and 50%) depending on the water matrix. Conversely, coupling CX/Fe with simulated solar or UVA irradiation resulted in a cumulative effect in experiments performed in ultrapure water.  相似文献   
66.
Biochar has been intensively researched worldwide. In Brazil, there is a variety of feedstock production that can be turned into soil amendments of high performance through biochar conversion, especially solid wastes. However, advances in biochar research in Brazil have not been systematically evaluated to indicate possible gaps and suggest future research for eco-friendly applications. Thus, in this work we evaluated biochar properties and effects on air, water, and soil quality based on data gathered from researches performed in Brazil. Biochar has been mainly evaluated as soil conditioner (37%), material characterization (17%), water treatment (12%), and greenhouse gases emissions (9%). Based on the data synthesis of 68 feedstocks used for biochar production, we observed that the pyrolysis temperature profoundly affects biochar properties. Meta-analysis indicated benefits of biochar addition to soils for chemical, physical, microbiological and biochemical attributes that have resulted in increases in root growth (+30%), and plant shoots (+45%). Pyrolysis temperature and feedstock are key choices to design biochar properties aiming to retain dyes, aromatic hydrocarbon, pesticides, and metals in water and wastewater treatment. It was also observed an increase in CO2 and a decrease in N2O emissions after biochar application to soils in short-term experiments. Although there is a growing interest in the development of electrochemical sensors and biochar-based fertilizers, technological applications of biochar are still incipient in Brazil. Future research should prioritize long-term and mechanistically evaluations of biochar under field conditions and the development of eco-friendly technological applications.  相似文献   
67.
68.
Lind EM  Barbosa P 《Ecology》2010,91(11):3274-3283
Species in a given trophic level occur in vastly unequal abundance, a pattern commonly documented but poorly explained for most taxa. Theoretical predictions of species density such as those arising from the metabolic theory of ecology hold well at large spatial and temporal scales but are not supported in many communities sampled at a relatively small scale. At these scales ecological factors may be more important than the inherent limits to energy use set by allometric scaling of mass. These factors include the amount of resources available, and the ability of individuals to convert these resources successfully into population growth. While previous studies have demonstrated the limits of macroecological theory in explaining local abundance, few studies have tested alternative generalized mechanisms determining abundance at the community scale. Using an assemblage of forest moth species found co-occurring as caterpillars on a single host plant species, we tested whether species abundance on that plant could be explained by mass allometry, intrinsic population growth, diet breadth, or some combination of these traits. We parameterized life history traits of the caterpillars in association with the host plant in both field and laboratory settings, so that the population growth estimate was specific to the plant on which abundance was measured. Using a generalized least-squares regression method incorporating phylogenetic relatedness, we found no relationship between abundance and mass but found that abundance was best explained by both intrinsic population growth rate and diet breadth. Species population growth potential was most affected by survivorship and larval development time on the host plant. Metabolic constraints may determine upper limits to local abundance levels for species, but local community abundance is strongly predicted by the potential for population increase and the resources available to that species in the environment.  相似文献   
69.
The ability of pine bark and almond shells to remove bisphenol A (BPA) from aqueous solutions was evaluated. Samples of these traditional agro-forestry by-products were milled, sieved into different particle size fractions (0.10–0.15 and 1.5–2.0 mm) and submitted to two different types of treatment. Sorption experiments were conducted in a batch system at room temperature and natural pH. Sorption equilibrium was attained after 48 h for all systems under study. Bisphenol A was adsorbed more effectively on the smaller particles of the sorbents. Pine bark and almond shell pretreated with formaldehyde presented higher sorption efficiency (95%), followed by almond shell (87%) and pine bark (82%) washed with hot water. All the sorption isotherms were found to fit a Freundlich equation, with correlation coefficients (R 2) between 0.823 and 0.989. The sorption coefficient (K F) ranged from 0.06 to 0.74 (mg1?1/n ·L 1/n ·g ?1). These results indicate that utilisation of both materials as an alternative sorbent for the removal of bisphenol A from contaminated waters is promising because they are available in large amounts and have an acceptable cost–efficiency ratio when compared with traditional adsorbents.  相似文献   
70.
Crude oil and other liquid materials are transported in large quantities through pipelines. Pipelines are an efficient and safe transport way as compared to both rail and road transportation, both from the economical and environmental points of view. Nevertheless, loss of containment accidents can occur due to external action –a mechanical impact, for example– or to corrosion, aging, etc. Even though the frequency of such events is certainly very low, the effects and consequences on environment can be very important.The consequences of accidents in pipelines can be efficiently reduced through a suitable design of the whole system. One of the points which must be decided in the design is the installation of blocking valves at appropriate distances, so that emergency shutdowns can interrupt the flow of substance and isolate the section where the loss of containment has taken place. In the case of pipe rupture the amount released is therefore limited to the content between two consecutive valves, usually placed according to heuristic criteria. However, if too many valves are used, the capital cost of equipment increases excessively, and if too few are used, the risk of serious accidents increases.In this paper we consider the possibility of improving the design of such systems by applying risk-based optimization criteria. We propose an optimization methodology to solve this conflict by means of an objective function that analyzes the variations in overall costs, including the cost of the investment (with specific reference to blocking valves) and the cost of accidents. The result is an optimum situation in which costs are kept to a minimum. As an example, we apply the methodology to the transportation of gasoline by pipeline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号