首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   10篇
  国内免费   2篇
安全科学   27篇
废物处理   30篇
环保管理   61篇
综合类   51篇
基础理论   107篇
污染及防治   74篇
评价与监测   17篇
社会与环境   13篇
灾害及防治   1篇
  2023年   3篇
  2022年   5篇
  2021年   8篇
  2020年   6篇
  2019年   4篇
  2018年   11篇
  2017年   6篇
  2016年   12篇
  2015年   16篇
  2014年   9篇
  2013年   26篇
  2012年   16篇
  2011年   17篇
  2010年   13篇
  2009年   15篇
  2008年   15篇
  2007年   16篇
  2006年   17篇
  2005年   12篇
  2004年   11篇
  2003年   7篇
  2002年   7篇
  2001年   8篇
  2000年   7篇
  1999年   15篇
  1998年   8篇
  1997年   12篇
  1996年   7篇
  1995年   4篇
  1994年   5篇
  1993年   5篇
  1992年   10篇
  1991年   2篇
  1990年   2篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1984年   2篇
  1982年   3篇
  1981年   3篇
  1979年   3篇
  1977年   3篇
  1974年   2篇
  1973年   2篇
  1962年   2篇
  1961年   1篇
  1960年   1篇
  1954年   1篇
  1935年   1篇
  1913年   1篇
排序方式: 共有381条查询结果,搜索用时 93 毫秒
41.
Objective: Injury risk curves estimate motor vehicle crash (MVC) occupant injury risk from vehicle, crash, and/or occupant factors. Many vehicles are equipped with event data recorders (EDRs) that collect data including the crash speed and restraint status during a MVC. This study's goal was to use regulation-required data elements for EDRs to compute occupant injury risk for (1) specific injuries and (2) specific body regions in frontal MVCs from weighted NASS-CDS data.

Methods: Logistic regression analysis of NASS-CDS single-impact frontal MVCs involving front seat occupants with frontal airbag deployment was used to produce 23 risk curves for specific injuries and 17 risk curves for Abbreviated Injury Scale (AIS) 2+ to 5+ body region injuries. Risk curves were produced for the following body regions: head and thorax (AIS 2+, 3+, 4+, 5+), face (AIS 2+), abdomen, spine, upper extremity, and lower extremity (AIS 2+, 3+). Injury risk with 95% confidence intervals was estimated for 15–105 km/h longitudinal delta-Vs and belt status was adjusted for as a covariate.

Results: Overall, belted occupants had lower estimated risks compared to unbelted occupants and the risk of injury increased as longitudinal delta-V increased. Belt status was a significant predictor for 13 specific injuries and all body region injuries with the exception of AIS 2+ and 3+ spine injuries. Specific injuries and body region injuries that occurred more frequently in NASS-CDS also tended to carry higher risks when evaluated at a 56 km/h longitudinal delta-V. In the belted population, injury risks that ranked in the top 33% included 4 upper extremity fractures (ulna, radius, clavicle, carpus/metacarpus), 2 lower extremity fractures (fibula, metatarsal/tarsal), and a knee sprain (2.4–4.6% risk). Unbelted injury risks ranked in the top 33% included 4 lower extremity fractures (femur, fibula, metatarsal/tarsal, patella), 2 head injuries with less than one hour or unspecified prior unconsciousness, and a lung contusion (4.6–9.9% risk). The 6 body region curves with the highest risks were for AIS 2+ lower extremity, upper extremity, thorax, and head injury and AIS 3+ lower extremity and thorax injury (15.9–43.8% risk).

Conclusions: These injury risk curves can be implemented into advanced automatic crash notification (AACN) algorithms that utilize vehicle EDR measurements to predict occupant injury immediately following a MVC. Through integration with AACN, these injury risk curves can provide emergency medical services (EMS) and other patient care providers with information on suspected occupant injuries to improve injury detection and patient triage.  相似文献   
42.
Objective: There has been a longstanding desire for a map to convert International Classification of Diseases (ICD) injury codes to Abbreviated Injury Scale (AIS) codes to reflect the severity of those diagnoses. The Association for the Advancement of Automotive Medicine (AAAM) was tasked by European Union representatives to create a categorical map classifying diagnoses codes as serious injury (Abbreviated Injury Scale [AIS] 3+), minor/moderate injury (AIS 1/2), or indeterminate. This study's objective was to map injury-related ICD-9-CM (clinical modification) and ICD-10-CM codes to these severity categories.

Methods: Approximately 19,000 ICD codes were mapped, including injuries from the following categories: amputations, blood vessel injury, burns, crushing injury, dislocations/sprains/strains, foreign body, fractures, internal organ, nerve/spinal cord injury, intracranial, laceration, open wounds, and superficial injury/contusion. Two parallel activities were completed to create the maps: (1) An in-person expert panel and (2) an electronic survey. The panel consisted of expert users of AIS and ICD from North America, the United Kingdom, and Australia. The panel met in person for 5 days, with follow-up virtual meetings to create and revise the maps. Additional qualitative data were documented to resolve potential discrepancies in mapping. The electronic survey was completed by 95 injury coding professionals from North America, Spain, Australia, and New Zealand over 12 weeks. ICD-to-AIS maps were created for: ICD-9-CM and ICD-10-CM. Both maps indicated whether the corresponding AIS 2005/Update 2008 severity score for each ICD code was AIS 3+, 1/2, or indeterminable. Though some ICD codes could be mapped to multiple AIS codes, the maximum severity of all potentially mapped injuries determined the final severity categorization.

Results: The in-person panel consisted of 13 experts, with 11 Certified AIS specialists (CAISS) with a median of 8 years and an average of 15 years of coding experience. Consensus was reached for AIS severity categorization for all injury-related ICD codes. There were 95 survey respondents, with a median of 8 years of injury coding experience. Approximately 15 survey responses were collected per ICD code. Results from the 2 activities were compared, and any discrepancies were resolved using additional qualitative and quantitative data from the in-person panel and survey results, respectively.

Conclusions: Robust maps of ICD-9-CM and ICD-10-CM injury codes to AIS severity categories (3+ versus <3) were successfully created from an in-person panel discussion and electronic survey. These maps provide a link between the common ICD diagnostic lexicons and the AIS severity coding system and are of value to injury researchers, public health scientists, and epidemiologists using large databases without available AIS coding.  相似文献   
43.
A series of mesocosms was exposed to a suite of light treatments and nutrient enrichment in order to generate algal communities of varying biomass. the influence of this biomass on the speciation of copper (II) was studied. Distribution coefficients (Kd,Lkg-1) were relatively high (logKd = 5 to 7), indicative of robust trace metal sequestration, and were likely controlled by the particulate organic carbon content (foc). Differences in Kd over time and among treatments were significant, as was the relationship between Kd and foc. Fluorescence quenching was used to determine binding capacities (Lt, M) and their associated binding constants (Kcond,M-1) in order to model the solid phase copper speciation. the Kcond ranged between 2.1 and 5.2 × 1012M-1, indicating a very strong copper-ligand complex, and was higher in mesocosms that received more light. the light Lt increased over time, dramatically after the nutrient enrichment, but did not vary systematically among light treatments. Lt ranged from 7.2 × 10- 7 to 4.9 × 10- 5 M. the large magnitudes of Kd, Kcond and Lt ensured that greater than 97% of total copper in the mesocosms was complexed by organic matter. the total copper concentration ([Cu]T, M) needed to reach a target dissolved copper concentration of 10-12.5 M (pCu = 12.5) was determined for each mesocosm over time. [Cu]T was between 8.02 × 10-5 and 3.41 × 10-2 M, and increased over time. the [Cu]T normalized to the target pCu (Effective Dose Ratio, EDR) increased directly with increases in algal biomass, indicating a direct link between system productivity and copper exposure. Approximately 45% of the variance in EDR was explained by variance in total biomass, while the residual variance in EDR was due likely to differences in the strengths of particle associations and magnitude of binding capacities.  相似文献   
44.
ABSTRACT

Air and precipitation samples were collected along an urban to over-water to rural transect across the northern Chesapeake Bay as a preliminary investigation into the spatial extent of elevated atmospheric concentrations of urban-derived persistent organic pollutants. Air samples were collected daily from June 3–9, 1996, along the transect as part of the Atmospheric Exchange over Lakes and Oceans project. Total (gas + particle bound) atmospheric polycy-clic aromatic hydrocarbon concentrations [∑-PAH] ranged from 0.4 to 114 ng/m3, and gas phase polychlorinated bi-phenyl concentrations [∑-PCB] ranged from 0.02 to 3.4 ng/m3. Strong concentration gradients were found for both PAHs and PCBs, with the highest concentrations in the city and the lowest at the downwind rural site. Gas and particle bound PAHs varied independently in the city, possibly due to strong but geographically separated emission sources. A precipitation event collected during westerly winds contained fourfold higher ∑-PAH and twelvefold higher ∑-PCB concentrations at the over-water site than at the rural background location, further indicating that the urban plume extends from Baltimore, MD, over the northern Chesapeake Bay over a spatial scale of approximately 30 km.  相似文献   
45.
46.
Accurate assessment of shark population status is essential for conservation but is often constrained by limited and unreliable data. To provide a basis for improved management of shark resources, we analyzed a long‐term record of species‐specific catches, sizes, and sexes of sharks collected by onboard observers in the western and central Pacific Ocean from 1995 to 2010. Using generalized linear models, we estimated population‐status indicators on the basis of catch rate and biological indicators of fishing pressure on the basis of median size to identify trends for blue (Prionace glauca), mako (Isurus spp.), oceanic whitetip (Carcharhinus longimanus), and silky (Carcharhinus falciformis) sharks. Standardized catch rates of longline fleets declined significantly for blue sharks in the North Pacific (by 5% per year [CI 2% to 8%]), for mako sharks in the North Pacific (by 7% per year [CI 3% to 11%]), and for oceanic whitetip sharks in tropical waters (by 17% per year [CI 14% to 20%]). Median lengths of silky and oceanic whitetip sharks decreased significantly in their core habitat, and almost all sampled silky sharks were immature. Our results are consistent with results of analyses of similar data sets. Combined, these results and evidence of targeted fishing for sharks in some regional fisheries heighten concerns for sustainable utilization, particularly for oceanic whitetip and North Pacific blue sharks. Regional regulations that prohibit shark finning (removal of fins and discarding of the carcass) were enacted in 2007 and are in many cases the only form of control on shark catches. However, there is little evidence of a reduction of finning in longline fisheries. In addition, silky and oceanic whitetip sharks are more frequently retained than finned, which suggests that even full implementation of and adherence to a finning prohibition may not substantially reduce mortality rates for these species. We argue that finning prohibitions divert attention from assessing whether catch levels are sustainable and that the need for management of sharks should not be addressed by measures that are simple to implement but complex to enforce and evaluate. Tendencias Poblacionales de Tiburones del Océano Pacífico y la Utilidad de Regulaciones sobre Cercenamiento de Aletas  相似文献   
47.
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号