首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   7篇
  国内免费   2篇
安全科学   26篇
废物处理   24篇
环保管理   54篇
综合类   20篇
基础理论   84篇
污染及防治   54篇
评价与监测   12篇
社会与环境   6篇
灾害及防治   1篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2017年   6篇
  2016年   10篇
  2015年   13篇
  2014年   7篇
  2013年   16篇
  2012年   12篇
  2011年   13篇
  2010年   8篇
  2009年   13篇
  2008年   10篇
  2007年   10篇
  2006年   15篇
  2005年   10篇
  2004年   9篇
  2003年   6篇
  2002年   6篇
  2001年   5篇
  2000年   6篇
  1999年   14篇
  1998年   7篇
  1997年   12篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1964年   1篇
排序方式: 共有281条查询结果,搜索用时 0 毫秒
21.
The photoenhanced uptake of nitrogen dioxide (NO2) to the surface of commercially available self-cleaning window glass has been studied under controlled laboratory conditions. This material is one of an array of modern building products which incorporate titanium dioxide (TiO2) nanoparticles and are finding increasing use in populated urban areas. Amongst the principal drivers for the use of these materials is that they are thought to facilitate the irreversible removal of pollutants such as NO2 and organic molecules from the atmosphere and thus act to remediate air quality. While it appears that TiO2 materials do indeed remove organic molecules from built environments, in this study we show that the photoenhanced uptake of NO2 to one example material, self-cleaning window glass, is in fact accompanied by the substantial formation (50–70%) of gaseous nitrous acid (HONO). This finding has direct and serious implications for the use of these materials in urban areas. Not only is HONO a harmful respiratory irritant, it is also readily photolysed by solar radiation leading to the formation of hydroxyl radicals (OH) together with the re-release of NOx as NO. The net effect of subsequent OH initiated chemistry can then be the further degradation of air quality through the formation of secondary pollutants such as ozone and VOC oxidation products. In summary, we suggest that a scientifically conceived technical strategy for air quality remediation based on this technology, while widely perceived as universally beneficial, could in fact have effects precisely opposite to those intended.  相似文献   
22.
23.
24.
ABSTRACT: We measured diurnal changes in water levels in three swamps dominated by pondcypress trees (Taxodium distichum var. nuans) in central Florida for four years in order to obtain additional documentation of relatively low evapotranspiration (ET) rates. Two of these swamps were monitored for another three years after one of them was clearcut. Estimated annual ET from undisturbed cypress swamps varied from 38 cm/yr to 86 cm/yr, averaging 60 cm (not including interception). Faster ET rates may have been related to faster pondcypress growth rates, a greater proportion of hardwoods in the canopy, and clearcutting in the surrounding pine plantation. The average ET rate was considerably lower than ET rates that have been estimated for north Florida pine plantations. However, incorporating estimates of interception indicates that overall ET rates in pondcypress swamps may be only slightly lower than ET from pine plantations. ET decreased only 5 percent in one swamp after it was clearcut, indicating that this management practice is not likely to affect regional water balances.  相似文献   
25.
26.
We discuss how physical modelling can be used to reproduce atmospheric or oceanic flows in the laboratory. The similarity conditions for the effects of density stratification and Earth rotation are first presented. Then examples of results obtained on the large ‘Coriolis’ platform in Grenoble are described. These include topographic wakes in a stratified fluid and gravity currents. Physical modelling is not used to get direct results of practical relevance, but rather to test numerical models on specific processes of environmental flows. Therefore it must be performed in close relationship with theory and numerical modelling, using advanced measurement and data assimilation techniques.  相似文献   
27.
28.
Introduction: A simplified and computationally efficient human body finite element model is presented. The model complements the Global Human Body Models Consortium (GHBMC) detailed 50th percentile occupant (M50-O) by providing kinematic and kinetic data with a significantly reduced run time using the same body habitus.

Methods: The simplified occupant model (M50-OS) was developed using the same source geometry as the M50-O. Though some meshed components were preserved, the total element count was reduced by remeshing, homogenizing, or in some cases omitting structures that are explicitly contained in the M50-O. Bones are included as rigid bodies, with the exception of the ribs, which are deformable but were remeshed to a coarser element density than the M50-O. Material models for all deformable components were drawn from the biomechanics literature. Kinematic joints were implemented at major articulations (shoulder, elbow, wrist, hip, knee, and ankle) with moment vs. angle relationships from the literature included for the knee and ankle. The brain of the detailed model was inserted within the skull of the simplified model, and kinematics and strain patterns are compared.

Results: The M50-OS model has 11 contacts and 354,000 elements; in contrast, the M50-O model has 447 contacts and 2.2 million elements. The model can be repositioned without requiring simulation. Thirteen validation and robustness simulations were completed. This included denuded rib compression at 7 discrete sites, 5 rigid body impacts, and one sled simulation. Denuded tests showed a good match to the experimental data of force vs. deflection slopes. The frontal rigid chest impact simulation produced a peak force and deflection within the corridor of 4.63 kN and 31.2%, respectively. Similar results vs. experimental data (peak forces of 5.19 and 8.71 kN) were found for an abdominal bar impact and lateral sled test, respectively. A lateral plate impact at 12 m/s exhibited a peak of roughly 20 kN (due to stiff foam used around the shoulder) but a more biofidelic response immediately afterward, plateauing at 9 kN at 12 ms. Results from a frontal sled simulation showed that reaction forces and kinematic trends matched experimental results well. The robustness test demonstrated that peak femur loads were nearly identical to the M50-O model. Use of the detailed model brain within the simplified model demonstrated a paradigm for using the M50-OS to leverage aspects of the M50-O. Strain patterns for the 2 models showed consistent patterns but greater strains in the detailed model, with deviations thought to be the result of slightly different kinematics between models. The M50-OS with the deformable skull and brain exhibited a run time 4.75 faster than the M50-O on the same hardware.

Conclusions: The simplified GHBMC model is intended to complement rather than replace the detailed M50-O model. It exhibited, on average, a 35-fold reduction in run time for a set of rigid impacts. The model can be used in a modular fashion with the M50-O and more broadly can be used as a platform for parametric studies or studies focused on specific body regions.  相似文献   
29.
Objective: There has been a longstanding desire for a map to convert International Classification of Diseases (ICD) injury codes to Abbreviated Injury Scale (AIS) codes to reflect the severity of those diagnoses. The Association for the Advancement of Automotive Medicine (AAAM) was tasked by European Union representatives to create a categorical map classifying diagnoses codes as serious injury (Abbreviated Injury Scale [AIS] 3+), minor/moderate injury (AIS 1/2), or indeterminate. This study's objective was to map injury-related ICD-9-CM (clinical modification) and ICD-10-CM codes to these severity categories.

Methods: Approximately 19,000 ICD codes were mapped, including injuries from the following categories: amputations, blood vessel injury, burns, crushing injury, dislocations/sprains/strains, foreign body, fractures, internal organ, nerve/spinal cord injury, intracranial, laceration, open wounds, and superficial injury/contusion. Two parallel activities were completed to create the maps: (1) An in-person expert panel and (2) an electronic survey. The panel consisted of expert users of AIS and ICD from North America, the United Kingdom, and Australia. The panel met in person for 5 days, with follow-up virtual meetings to create and revise the maps. Additional qualitative data were documented to resolve potential discrepancies in mapping. The electronic survey was completed by 95 injury coding professionals from North America, Spain, Australia, and New Zealand over 12 weeks. ICD-to-AIS maps were created for: ICD-9-CM and ICD-10-CM. Both maps indicated whether the corresponding AIS 2005/Update 2008 severity score for each ICD code was AIS 3+, 1/2, or indeterminable. Though some ICD codes could be mapped to multiple AIS codes, the maximum severity of all potentially mapped injuries determined the final severity categorization.

Results: The in-person panel consisted of 13 experts, with 11 Certified AIS specialists (CAISS) with a median of 8 years and an average of 15 years of coding experience. Consensus was reached for AIS severity categorization for all injury-related ICD codes. There were 95 survey respondents, with a median of 8 years of injury coding experience. Approximately 15 survey responses were collected per ICD code. Results from the 2 activities were compared, and any discrepancies were resolved using additional qualitative and quantitative data from the in-person panel and survey results, respectively.

Conclusions: Robust maps of ICD-9-CM and ICD-10-CM injury codes to AIS severity categories (3+ versus <3) were successfully created from an in-person panel discussion and electronic survey. These maps provide a link between the common ICD diagnostic lexicons and the AIS severity coding system and are of value to injury researchers, public health scientists, and epidemiologists using large databases without available AIS coding.  相似文献   
30.
Air quality in Cyprus is influenced by both local and transported pollution, including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993, through December 11, 2008, and in Ayia Marina (rural background representative) from January 1, 1999, through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records, and satellite data were used to identify dust storm days. We investigated long-term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year. A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000–2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact of dust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit.
ImplicationsThis paper examines PM10 concentrations in Nicosia, Cyprus, from 1993 to 2008. The decrease in PM10 levels in Nicosia suggests that the implementation of traffic emission control policies in Cyprus has been effective. However, particle levels still exceeded the European Union annual standard, and dust storms were responsible for a small fraction of the daily PM10 limit exceedances. Other natural particles that are not assessed in this study, such as resuspended soil and sea salt, may be responsible in part for the high particle levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号