首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4935篇
  免费   106篇
  国内免费   74篇
安全科学   233篇
废物处理   244篇
环保管理   1296篇
综合类   422篇
基础理论   1152篇
环境理论   5篇
污染及防治   1181篇
评价与监测   345篇
社会与环境   187篇
灾害及防治   50篇
  2023年   22篇
  2022年   21篇
  2021年   47篇
  2020年   32篇
  2019年   60篇
  2018年   72篇
  2017年   93篇
  2016年   117篇
  2015年   117篇
  2014年   112篇
  2013年   565篇
  2012年   181篇
  2011年   259篇
  2010年   196篇
  2009年   189篇
  2008年   272篇
  2007年   272篇
  2006年   246篇
  2005年   172篇
  2004年   189篇
  2003年   192篇
  2002年   175篇
  2001年   85篇
  2000年   111篇
  1999年   100篇
  1998年   80篇
  1997年   65篇
  1996年   76篇
  1995年   75篇
  1994年   64篇
  1993年   68篇
  1992年   74篇
  1991年   46篇
  1990年   53篇
  1989年   46篇
  1988年   38篇
  1987年   42篇
  1986年   44篇
  1985年   42篇
  1984年   47篇
  1983年   50篇
  1982年   41篇
  1981年   55篇
  1980年   48篇
  1979年   23篇
  1978年   24篇
  1977年   21篇
  1976年   13篇
  1975年   15篇
  1971年   13篇
排序方式: 共有5115条查询结果,搜索用时 15 毫秒
181.
182.
183.
184.
We report measurements of solubility limits for benzene, toluene, and TCE in systems that contain varying levels of biomass up to 0.13 g mL−1 for TCE and 0.25 g mL−1 for benzene and toluene. The solubility limit increased from 21 to 48 mM when biomass (in the form of yeast) was added to aqueous batch systems containing benzene. The toluene solubility limit increased from 4.9 to greater than 20 mM. For TCE, the solubility increased from 8 mM to more than 1000 mM. Solubility for TCE (trichloroethylene) was most heavily impacted by biomass levels, changing by two orders of magnitude as the microbial concentrations approach those in biofilms.  相似文献   
185.
Atrazine biodegradation by immobilized pure and mixed cultures was examined. A pure atrazine-degrading culture, Agrobacterium radiobacter J14a (J14a), and a mixed culture (MC), isolated from an atrazine-contaminated crop field, were immobilized using phosphorylated-polyvinyl alcohol (PPVA). An existing cell immobilization procedure was modified to enhance PPVA matrix stability. The results showed that the matrices remained mechanically and chemically stable after shaking with glass beads over 15 days under various salt solutions and pH values. The immobilization process had a slight effect on cell viability. With the aid of scanning electron microscopy, a suitable microstructure of PPVA matrices for cell entrapment was observed. There were two porous layers of spherical gel matrices, the outside having an encapsulation property and the inside containing numerous pores for bacteria to occupy. J14a and MC were immobilized at three cell-to-matrix ratios of 3.5, 6.7, and 20 mg dry cells/mL matrix. The atrazine biodegradation tests were conducted in an aerobic batch system, which was inoculated with cells at 2,000 mg/L. The tests were also conducted using free (non-immobilized) J14a and MC for comparative purpose. The cell-to-matrix ratio of 3.5 mg/mL provided the highest atrazine removal efficiency of 40–50% in 120 h for both J14a and MC. The free cell systems, for both cultures, presented much lower atrazine removal efficiencies compared to the immobilized cell systems at the same level of inoculation.  相似文献   
186.
187.
In this study, the biodegradation of PLA films using microorganisms from Lake Bogoria (Kenya) were investigated. The biodegradation tests done using certain strains of thermophilic bacteria showed faster biodegradation rates and demonstrated temperature dependency. The biodegradation of the PLA films was studied using Gel Permeation Chromatography (GPC) and light microscopy. The biodegradation of PLA was demonstrated by decrease in molecular weight. The preparation and characterization of PLA/Gum Arabic blends were also investigated using DSC, TGA, TMA and NMR. In summary, the results obtained in this research show that PLA films undergo fast biodegradation using thermophiles isolated from Lake Bogoria. The PLA/GA blends studies show it is possible to prepare films of varying hydrophobic–hydrophilic properties for various applications.  相似文献   
188.
Abstract: Budget constraints require the U.S. Fish and Wildlife Service to prioritize species for recovery spending. Each listed species is ranked according to the degree of threat it faces, its recovery potential, and its taxonomic distinctness. We analyzed state and federal government expenditures for recovery of threatened and endangered birds ( n = 85 species) from 1992 to 1995 to determine if the priority system was being followed. Although recovery spending correlated with priority rank, priority rank explained <5% of the variation in spending. A small number of the same moderately ranked species dominated expenditures each year (41–79% of total annual budgets). Species with wide distributions, high recovery potential, and captive breeding programs received the most funding, and more funding than their priority ranks dictated. Island species received significantly less funding than expected based on priority rank. Twelve species, 10 of which resided on islands, received <$5000 at least once from 1992 to 1995. Recovery spending was unrelated to degree of threat, taxonomic distinctness, and migratory status. There also was no relationship between land-purchase expenditures and priority ranks. To improve the relationship between recovery spending on threatened and endangered birds and their priority rank, significant changes need to be made within the private sector ( less litigation and special-interest lobbying  ), U.S. Congress (increased budget and reduced earmarking  ), and the U.S. Fish and Wildlife Service (restructuring of regional offices and increased accountability).  相似文献   
189.
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.  相似文献   
190.
Pig manure (PM) is widely used as an organic fertilizer to increase yields of crops. Excessive application of compost containing relatively great concentrations of copper (Cu) and zinc (Zn) can change soil quality. To clarify the effects of different rates of application and to determine the optimal rate of fertilization, PM containing 1,115 mg Cu kg?1, dry mass (dm) and 1,497 mg Zn kg?1, dm was applied to alkaline soil at rates of 0, 11, 22, 44, 88, and 222 g PM kg?1, dm. Phospholipid fatty acids (PLFAs) were used to assess soil microbial community composition. Application of PM resulted in greater concentrations of total nitrogen (TN), NH4 +-N, NO3 ?-N, total carbon (TC), soil organic matter (SOM) but lesser pH values. Soils with application rates of 88–222 g PM kg?1, dm had concentrations of total and EDTA-extractable Cu and Zn significantly greater than those in soil without PM, and concentrations of T-Cu and T-Zn in these amended soils exceeded maximum limits set by standards in china. Except in the soil with a rate of 11 g PM kg?1, dm, total bacterial and fungal PLFAs were directly proportional to rate of application of PM. Biomasses of bacteria and fungi were significantly greater in soils with application rates of 44–222 g PM kg?1, dm than in the soil without PM. SOM, TC and EDTA-Zn had the most direct influence on soil microbial communities. To improve fertility of soils and maintain quality of soil, rate of application should be 22–44 g PM kg?1 dm, soil containing Cu and Zn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号