首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2073篇
  免费   37篇
  国内免费   54篇
安全科学   76篇
废物处理   105篇
环保管理   301篇
综合类   328篇
基础理论   559篇
环境理论   1篇
污染及防治   510篇
评价与监测   134篇
社会与环境   134篇
灾害及防治   16篇
  2023年   18篇
  2022年   62篇
  2021年   22篇
  2020年   29篇
  2019年   32篇
  2018年   75篇
  2017年   59篇
  2016年   52篇
  2015年   72篇
  2014年   64篇
  2013年   165篇
  2012年   77篇
  2011年   110篇
  2010年   100篇
  2009年   103篇
  2008年   104篇
  2007年   99篇
  2006年   73篇
  2005年   64篇
  2004年   96篇
  2003年   85篇
  2002年   61篇
  2001年   111篇
  2000年   50篇
  1999年   34篇
  1998年   25篇
  1997年   22篇
  1996年   12篇
  1995年   27篇
  1994年   12篇
  1993年   13篇
  1992年   19篇
  1991年   12篇
  1990年   15篇
  1989年   15篇
  1988年   7篇
  1987年   10篇
  1985年   9篇
  1984年   11篇
  1983年   11篇
  1982年   8篇
  1980年   7篇
  1979年   6篇
  1975年   8篇
  1974年   10篇
  1973年   7篇
  1972年   12篇
  1971年   6篇
  1959年   5篇
  1957年   5篇
排序方式: 共有2164条查询结果,搜索用时 125 毫秒
51.
Rainwater characteristics can reveal emissions from various anthropogenic and natural sources into the atmosphere. The physico-chemical characteristics of 44 monthly rainfall events (collected between January and December 2012) from 4 weather stations (Bamenda, Ndop plain, Ndawara and Kumbo) in the Bamenda Highlands (BH) were investigated. The purpose was to determine the sources of chemical species, their seasonal inputs and suitability of the rainwater for drinking. The mean pH of 5 indicated the slightly acidic nature of the rainwater. Average total dissolved solids (TDS) were low (6.7 mg/L), characteristic of unpolluted atmospheric moisture/air. Major ion concentrations (mg/L) were low and in the order K+ 〉 Ca2+ 〉 Mg2~ 〉 Na+ for cations and NO3 〉〉 HCO3 〉 SO] 〉 CI- 〉 PO3- 〉 F- for anions. The average rainwater in the area was mixed Ca-Mg-SO4-CI water type. The CI-/Na+ ratio (1.04) was comparable to that of seawater (1.16), an indication that N a+ and CI originated mainly from marine (Atlantic Ocean) aerosols. High enrichments of Ca2+, Mg2+ and SO2- to Na+ ratios relative to seawater ratios (constituting 44% of the total ions) demonstrated their terrigenous origin, mainly from Saharan and Sahelian arid dusts. The K+/Na+ ratio (2.24), which was similar to tropical vegetation ash (2.38), and NO3 was essentially from biomass burning. Light (〈 100 mm) pre-monsoon and post-monsoon convective rains were enriched in major ions than the heavy (〉 100 mm) monsoon rains, indicating a high contribution of major ions during the low convective showers. Despite the acidic nature, the TDS and major ion concentrations classified the rainwater as potable based on the WHO guidelines.  相似文献   
52.
Consumption of food crops contaminated with heavy metals is a major food chain route for human exposure. We studied the health risks of heavy metals in contaminated food crops irrigated with wastewater. Results indicate that there is a substantial buildup of heavy metals in wastewater-irrigated soils, collected from Beijing, China. Heavy metal concentrations in plants grown in wastewater-irrigated soils were significantly higher (P相似文献   
53.
54.
A passive air sampler was developed for collecting polycyclic aromatic hydrocarbons (PAHs) in air mass from various directions. The airflow velocity within the sampler was assessed for its responses to ambient wind speed and direction. The sampler was examined for trapped particles, evaluated quantitatively for influence of airflow velocity and temperature on PAH uptake, examined for PAH uptake kinetics, calibrated against active sampling, and finally tested in the field. The airflow volume passing the sampler was linearly proportional to ambient wind speed and sensitive to wind direction. The uptake rate for an individual PAH was a function of airflow velocity, temperature and the octanol-air partitioning coefficient of the PAH. For all PAHs with more than two rings, the passive sampler operated in a linear uptake phase for three weeks. Different PAH concentrations were obtained in air masses from different directions in the field test.  相似文献   
55.
The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis.  相似文献   
56.
Tao S  Li BG  He XC  Liu WX  Shi Z 《Chemosphere》2007,68(1):10-16
Water, suspended solid (SS) and sediment samples were collected from nine water courses in Tianjin, China and analyzed for dichlorodiphenyltrichloroethane (DDT) and its metabolites (DDXs, including o,p'-,p,p'-DDT, DDD and DDE). The average DDX concentrations in water, SS and sediment were 59+/-30 ng l(-1), 2690+/-1940 ng g(-1)dry wt. and 340+/-930 ng g(-1)dry wt., respectively. Due to the termination of the extensive agricultural application and industrial manufacture, DDXs in river sediment decreased by one order of magnitude since 1970's and low DDT fractions in these sediments were observed. Still, DDXs in the sediments near the outlets of the major manufacturers remained relatively high attributed to the historic input. DDXs in sediment were also positively correlated with organic matter content. Spatial distributions of DDXs in SS and water was different from that in sediment. For SS, a negative correlation between DDX concentration and SS content indicated a dilution effect in many rivers. Dissolved organic carbon content was the major factor affecting DDX concentrations in water phase. Wastewater discharged from dicofol manufacturers and likely illegal agricultural application were the primary reasons causing high DDT (DDE+DDD) ratios in SS and water.  相似文献   
57.
Daily fine particulate matter (PM2.5) samples were collected at Gwangju, Korea, during the Aerosol Characterization Experiments (ACE)-Asia Project to determine the chemical properties of PM2.5 originating from local pollution and Asian dust (AD) storms. During the study period, two significant events occurred on April 10-13 and 24-25, 2001, and a minor event occurred on April 19, 2001. Based on air mass transport pathways identified by back-trajectory calculation, the PM2.5 dataset was classified into three types of aerosol populations: local pollution and two AD aerosol types. The two AD types were transported along different pathways. One originated from Gobi desert area in Mongolia, passing through Hunshandake desert in Northern Inner Mongolia, urban and polluted regions of China (AD1), and the other originated in sandy deserts located in the Northeast Inner Mongolia Plateau and then flowed southward through the Korean peninsula (AD2). During the AD2 event, a smoke plume that originated in North Korea was transported to our study site. Mass balance closures show that crustal materials were the most significant species during both AD events, contributing -48% to the PM2.5 mass; sulfate aerosols (19.1%) and organic matter (OM; 24.6%) were the second greatest contributors during the AD1 and AD2 periods, respectively, indicating that aerosol properties were dependent on the transport pathway. The sulfate concentration constituted only 6.4% (4.5 microg/m3) of the AD2 PM2.5 mass. OM was the major chemical species in the local pollution-dominated PM2.5 aerosols, accounting for 28.7% of the measured PM2.5 mass, followed by sulfate (21.4%), nitrate (15%), ammonium (12.8%), elemental carbon (8.9%), and crustal material (6.5%). Together with substantial enhancement of the crustal elements (Mg, Al, K, Ca, Sc, Ti, Mn, Fe, Sr, Zr, Ba, and Ce), higher concentrations of pollution elements (S, V, Ni, Zn, As, Cd, and Pb) were observed during AD1 and AD2 than during the local pollution period, indicating that, in addition to crustal material, the AD dust storms also had a significant influence on anthropogenic elements.  相似文献   
58.
Jing YD  He ZL  Yang XE 《Chemosphere》2007,69(10):1662-1669
The effects of pH, organic acids, and competitive cations on Hg(2+) desorption were studied. Three representative soils for rice production in China, locally referred to as a yellowish red soil (YRS), purplish clayey soil (PCS), and silty loam soil (SLS) and classified as Gleyi-Stagnic Anthrosols in FAO/UNESCO nomenclature, were, respectively, collected from Jiaxin County, Deqing County, and Xiasha District of Hangzhou City, Zhejiang Province. Most of the added Hg(2+) was adsorbed at low initial concentrations (<2 mg l(-1)). Desorption of the adsorbed Hg(2+) in 0.01M KCl (simulating soil solution) was minimal, but was significantly enhanced by the change of pH, and the presence of organic acids or competitive cations. The desorption of Hg(2+) in the soils decreased with pH from 3.0 to 5.0, leveled off at pH 5.0-8.0, but increased with pH from 7.0 to 9.0. The presence of organic ligands enhanced Hg(2+) desorption in the soils except for YRS, in which the addition of tartaric, malic, or oxalic acid reduced Hg(2+) desorption at low concentrations (<10(-4)M), but Hg(2+) desorption generally increased with organic acid concentration. Citric acid was most effective in increasing Hg(2+) desorption, followed by tartaric acid and malic acid; and oxalic acid was the least effective. Desorption of adsorbed Hg(2+) increased with increasing concentrations of added Cu(2+) or Zn(2+). Applied Cu(2+) increased Hg(2+) desorption more than Zn(2+) at the same loading rate. CAPSULE: The effects of organic acids and competitive cations on Hg desorption in soil-water system are related to their concentrations, basic chemical properties, and soil properties.  相似文献   
59.
Wastewater samples from an anaerobic reactor were extracted with hexane and derivatized with diazomethane (method 1) and with acetic anidride (method 2). Gas chromatography with electron-capture detection (ECD) was employed for separating the parent compound and intermediates trichlorophenols (TCP) and dichlorophenols (DCP) which originated from the penta chlorophenol (PCP) degradation process. The relations between concentrations of PCP, TCP and DCP areas were linear in the range of concentrations of 0.2 to 8 mg/L and 0.025 mg/L to 5 mg/L for methods 1 and 2, respectively. The repeatability of the extraction methods was satisfactory, with variation coefficients lower than 11%. For method 1, at the fortification level of 0.2 mg/L, recovery of PCP, TCP, and DCP was 112%, 74% and 45%, respectively. For method 2, the corresponding recovery values at the fortification level of 0.1 mg/L were 91%, 93% and 103%, respectively. Storage of the frozen samples did not alter their PCP determination properties. The chromatographic methods adapted for chlorophenol determination in wastewater were suitable with relatively simple manipulation techniques. The obtained results were reproducible and allowed identification of intermediates formed during the PCP degradation process.  相似文献   
60.
In this study, heavy metal contents of groundwater from the Mersin aquifer were determined with photometric methods and used to determine the main factors controlling the pollution of groundwater in the area. Using MapInfo GIS software, spatial analysis and integration were carried out for mapping drinking water quality in the basin. From the photometric heavy metal analysis, it is inferred that the excess concentration of Fe, Ni, Mn, Mo and Cu at some locations is the cause of undesirable quality for drinking purposes. Similarly, the EC thematic map shows that considerable areas in the basin are having high salinity hazards. The reason for excess concentration of various heavy metals is the industrial activities and petroleum pipelines and salinity levels show the sea water intrusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号