首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38336篇
  免费   335篇
  国内免费   238篇
安全科学   838篇
废物处理   1793篇
环保管理   5151篇
综合类   5519篇
基础理论   11321篇
环境理论   22篇
污染及防治   9331篇
评价与监测   2683篇
社会与环境   2058篇
灾害及防治   193篇
  2022年   186篇
  2021年   187篇
  2019年   220篇
  2018年   1776篇
  2017年   1648篇
  2016年   1670篇
  2015年   617篇
  2014年   692篇
  2013年   2152篇
  2012年   1281篇
  2011年   2448篇
  2010年   1667篇
  2009年   1551篇
  2008年   2026篇
  2007年   2423篇
  2006年   1191篇
  2005年   1021篇
  2004年   1033篇
  2003年   994篇
  2002年   1023篇
  2001年   1253篇
  2000年   868篇
  1999年   552篇
  1998年   434篇
  1997年   437篇
  1996年   443篇
  1995年   483篇
  1994年   439篇
  1993年   396篇
  1992年   414篇
  1991年   373篇
  1990年   376篇
  1989年   411篇
  1988年   347篇
  1987年   300篇
  1986年   276篇
  1985年   305篇
  1984年   297篇
  1983年   328篇
  1982年   322篇
  1981年   271篇
  1980年   243篇
  1979年   269篇
  1978年   229篇
  1977年   195篇
  1976年   200篇
  1975年   192篇
  1974年   172篇
  1973年   171篇
  1972年   198篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
851.
The rapid growth of urbanization and industrialization, along with dramatic climate change, has strongly influenced hydrochemical characteristics in recent decades in China and thus could cause the variation of pH and general total hardness of a river. To explore such variations and their potential influencing factors in a river of the monsoon climate region, we analyzed a long-term monitoring dataset of pH, SO4 2?, NOx, general total hardness (GH), Mg2+, Ca2+, and Cl? in surface water and groundwater in the Luan River basin from 1985 to 2009. The nonparametric Seasonal Kendall trend test was used to test the long-term trends of pH and GH. Relationship between the affecting factors, pH and GH were discussed. Results showed that pH showed a decreasing trend and that GH had an increasing trend in the long-term. Seasonal variation of pH and GH was mainly due to the typical monsoon climate. Results of correlation analysis showed that the unit area usage amounts of chemical fertilizer, NO3 ?, and SO4 2? were negatively correlated with pH in groundwater. In addition, mining activity affected GH spatial variation. Acid deposition, drought, and increasing the use of chemical fertilizers would contribute to the acidification trend, and mining activities would affect the spatial variation of GH. Variations of precipitation and runoff in semi-arid monsoon climate areas had significant influences on the pH and GH. Our findings implied that human activities played a critical role in river acidification in the semi-arid monsoon climate region of northern China.  相似文献   
852.
A multi-disciplinary approach was used to evaluate the health of yellow perch (Perca flavescens) in the St. Lawrence River (Quebec, Canada), which is experiencing a severe population decline in the downstream portion of the river. Physiological parameters, liver alterations, trace metal concentrations, parasite prevalence and abundance, stable isotope composition, and the presence/absence of the viral hemorragic septicemia virus (VHSV) were evaluated in perch collected at six sites along the river: Lake St. François, Lake St. Louis (north and south), Beauregard Island, and Lake St. Pierre (north and south). Trace metal concentrations in surface water were higher in Lake St. Louis and downstream of a major urban wastewater treatment plant discharge, indicating that this effluent was a significant source of Cu, As, Ag, Zn, and Cd. Levels of Pb in surface water exceeded thresholds for the protection of aquatic life in Lake St. Louis and were negatively correlated with body condition index in this lake. In Lake St. Pierre, Cu, Ag, and Cd bioaccumulated significantly in perch liver and lower body condition index and greater liver damage were observed compared to upstream sites. Parasite analyses indicated a higher abundance of metacercariae of the trematodes Apophallus brevis and Diplostomum spp. in Lake St. Louis, and VHSV was not detected in the liver of yellow perch for all studied sites. Overall, results suggested that the global health of yellow perch from Lake St. Pierre is lower compared to upstream studied sites, which could contribute to the documented population collapse at this site.  相似文献   
853.
854.
A simple online headspace solid-phase microextraction (HS-SPME) coupled with the gas chromatography-mass spectrometry (GC-MS) method was developed for simultaneous determination of trace amounts of nine estrogenic odorant alkylphenols and chlorophenols and their derivatives in water samples. The extraction conditions of HS-SPME were optimized including fiber selection, extraction temperature, extraction time, and salt concentration. Results showed that divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was the most appropriate one among the three selected commercial fibers, and the optimal extraction temperature, time, and salt concentration were 70 °C, 30 min, and 0.25 g/mL, respectively. The developed method was validated and showed good linearity (R 2?>?0.989), low limit of detection (LOD, 0.002–0.5 μg/L), and excellent recoveries (76–126 %) with low relative standard deviation (RSD, 0.7–12.9 %). The developed method was finally applied to two surface water samples and some of these target compounds were detected. All these detected compounds were below their odor thresholds, except for 2,4,6-TCAS and 2,4,6-TBAS wherein their concentrations were near their odor thresholds. However, in the two surface water samples, these detected compounds contributed to a certain amount of estrogenicity, which seemed to suggest that more attention should be paid to the issue of estrogenicity rather than to the odor problem.  相似文献   
855.
A novel approach for the electrospinning and functionalization of nanocatalyst-loaded polyvinylidene fluoride/polyacrylonitrile (PVDF/PAN) composite grafted with acrylic acid (AA; which form polyacrylic acid (PAA) brush) and decorated with silver (Ag/PAN/PVDF-g-PAA-TiO2/Fe–Pd) designed for the dechlorination and photodegradation of pesticides was carried out. PAN was used both as a nitrogen dopant as well as a co-polymer. Smooth nanofibers were obtained by electrospinning a solution of 12:2 wt.% PVDF/PAN blend using dimethylformamide (DMF) as solvent. The nanofibers were grafted with AA by free-radical polymerization using 2,2′azobis(2-methylpropionitrile) (AIBN) as initiator. Both bimetallic iron–palladium (Fe–Pd) and titania (TiO2) nanoparticles (NP) were anchored on the grafted nanofibers via the carboxylate groups by in situ and ex situ synthesis. The Fe–Pd and nitrogen-doped TiO2 nanoparticles were subsequently used for dechlorination and oxidation of target pollutants (dieldrin, chlorpyrifos, diuron, and fipronil) to benign products. Structural and chemical characterizations of the composites were done using various techniques. These include surface area and porosity analyzer (ASAP) using the technique by Brunner Emmett Teller (BET), Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM) analyses were done. After dechlorination, the transformation products (TPs) for dieldrin, chlorpyrifos, diuron, and fipronil were obtained and identified using two-dimensional gas chromatography (time-of-flight) with a mass spectrometer detector (GCxGC-TOFMS). Analysis of total organic carbon (TOC) was carried out and used to extrapolate percentage mineralization. Experimental results showed that dechlorination efficiencies of 96, 93, 96, and 90 % for 1, 2, 2, and 3 h treatment period were respectively achieved for 5 ppm solutions of dieldrin, chlorpyrifos, diuron, and fipronil. The dechlorination of dieldrin, diuron, and fipronil follows first-order kinetics while that of chlorpyrifos followed pseudo-first order. Mineralization performance of 34 to 45 % were recorded when Fe–Pd was used, however upon electrospinning, doping, and grafting (Ag/PAN/PVDF-g-PAA-TiO2/Fe–Pd composite); it significantly increased to 99.9999 %. This composite reveals great potential for dechlorination and mineralization of pesticides in contaminated water.  相似文献   
856.
Titanium dioxide nanoparticles (TiO2 NPs) are widely used for their whiteness and opacity in several applications such as food colorants, drug additives, biomedical ceramic, and implanted biomaterials. Research on the neurobiological response to orally administered TiO2 NPs is still limited. In our study, we investigate the effects of anatase TiO2 NPs on the brain of Wistar rats after oral intake. After daily intragastric administration of anatase TiO2 NPs (5–10 nm) at 0, 50, 100, and 200 mg/kg body weight (BW) for 60 days, the coefficient of the brain, acethylcholinesterase (AChE) activities, the level of interleukin 6 (IL-6), and the expression of glial fibrillary acidic protein (GFAP) were assessed to quantify the brain damage. The results showed that high-dose anatase TiO2 NPs could induce a downregulated level of AChE activities and showed an increase in plasmatic IL-6 level as compared to the control group accompanied by a dose-dependent decrease inter-doses, associated to an increase in the cerebral IL-6 level as a response to a local inflammation in brain. Furthermore, we observed elevated levels of immunoreactivity to GFAP in rat cerebral cortex. We concluded that oral intake of anatase TiO2 NPs can induce neuroinflammation and could be neurotoxic and hazardous to health.  相似文献   
857.
Remediation of soils contaminated with petroleum is a challenging task. Four different bioremediation strategies, including natural attenuation, biochar amendment, phytoremediation with ryegrass, and a combination of biochar and ryegrass, were investigated with greenhouse pot experiments over a 90-day period. The results showed that planting ryegrass in soil can significantly improve the removal rate of total petroleum hydrocarbons (TPHs) and the number of microorganisms. Within TPHs, the removal rate of total n-alkanes (45.83 %) was higher than that of polycyclic aromatic hydrocarbons (30.34 %). The amendment of biochar did not result in significant improvement of TPH removal. In contrast, it showed a clear negative impact on the growth of ryegrass and the removal of TPHs by ryegrass. The removal rate of TPHs was significantly lower after the amendment of biochar. The results indicated that planting ryegrass is an effective remediation strategy, while the amendment of biochar may not be suitable for the phytoremediation of soil contaminated with petroleum hydrocarbons.  相似文献   
858.
The main objectives of this work were to identify and determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) and trace metals in carpet dust samples from various mosques of the city of Riyadh and to assess the health risks associated with the exposure to these pollutants. Therefore, 31 samples of mosque’s carpet dust from Riyadh were collected. The results showed that 14 PAHs were present in the dust samples with concentrations ranged from 90 to 22,146 ng g?1 (mean = 4096 ± 4277 ng g?1) where low molecular weight compounds were dominant. The presence of PAHs were in the order of naphthalene > chrysene and benzo(b)fluoranthene > benzo(a)pyrene > acenaphthene and benzo(k)fluoranthene > pyrene and the absence of indeno(1,2,3-cd)pyrene and dibenz(a,h)anthracene. The diagnostic ratio coupled with principle component analysis (PCA) revealed mix sources of petrogenic from traffic, stack emission, and pyrogenic inputs from essence and perfumed wood burning. Trace metals were significant in the dust samples, and their concentrations decrease in the order of Zn, Mn, Cu, Cr, Pb, Ni, and V where Zn being the highest (94.4 ± 91.5 μg g?1) and indium was the lowest (1.9 ± 9.3 μg g?1). The trace metals were major in southern and central parts of Riyadh and followed the order of central Riyadh > southern Riyadh > western Riyadh > eastern Riyadh > northern Riyadh. Estimated risk based on the total PAHs was found to be 4.30 × 10?11 for adult and 1.56 × 10?11 for children. Elemental non-cancer risk for adults ranged from 7.9 × 10?4 for Co to 7.58 × 10?1 for Li and for children ranged from 3.70 × 10?3 for Co to 3.54 for Li. Policy implication and mitigations of PAHs in Riyadh and Saudi Arabia were highlighted.  相似文献   
859.
Various human activities like mining and extraction of mineral oils have been used for the modernization of society and well-beings. However, the by-products such as petrochemical wastes generated from such industries are carcinogenic and toxic, which had increased environmental pollution and risks to human health several folds. Various methods such as physical, chemical and biological methods have been used to degrade these pollutants from wastewater. Advance oxidation processes (AOPs) are evolving techniques for efficient sequestration of chemically stable and less biodegradable organic pollutants. In the present review, photocatalytic degradation of petrochemical wastes containing monoaromatic and poly-aromatic hydrocarbons has been studied using various heterogeneous photocatalysts (such as TiO2, ZnO and CdS. The present article seeks to offer a scientific and technical overview of the current trend in the use of the photocatalyst for remediation and degradation of petrochemical waste depending upon the recent advances in photodegradation of petrochemical research using bibliometric analysis. We further outlined the effect of various heterogeneous catalysts and their ecotoxicity, various degradation pathways of petrochemical wastes, the key regulatory parameters and the reactors used. A critical analysis of the available literature revealed that TiO2 is widely reported in the degradation processes along with other semiconductors/nanomaterials in visible and UV light irradiation. Further, various degradation studies have been carried out at laboratory scale in the presence of UV light. However, further elaborative research is needed for successful application of the laboratory scale techniques to pilot-scale operation and to develop environmental friendly catalysts which support the sustainable treatment technology with the “zero concept” of industrial wastewater. Nevertheless, there is a need to develop more effective methods which consume less energy and are more efficient in pilot scale for the demineralization of pollutant.  相似文献   
860.
Phosphorus (P) in agricultural ecosystems is an essential and limited element for plants and microorganisms. However, environmental problems caused by P accumulation as well as by P loss have become more and more serious. Oxygen isotopes of phosphate can trace the sources, migration, and transformation of P in agricultural soils. In order to use the isotopes of phosphate oxygen, appropriate extraction and purification methods for inorganic phosphate from soils are necessary. Here, we combined two different methods to analyze the oxygen isotopic composition of inorganic phosphate (δ18OP) from chemical fertilizers and different fractions (Milli-Q water, 0.5 mol L?1 NaHCO3 (pH = 8.5), 0.1 mol L?1 NaOH and 1 mol L?1 HCl) of agricultural soils from the Beijing area. The δ18OP results of the water extracts and NaHCO3 extracts in most samples were close to the calculated equilibrium value. These phenomena can be explained by rapid P cycling in soils and the influence of chemical fertilizers. The δ18OP value of the water extracts and NaHCO3 extracts in some soil samples below the equilibrium value may be caused by the hydrolysis of organic P fractions mediated by extracellular enzymes. The δ18OP values of the NaOH extracts were above the calculated equilibrium value reflecting the balance state between microbial uptake of phosphate and the release of intracellular phosphate back to the soil. The HCl extracts with the lowest δ18OP values and highest phosphate concentrations indicated that the HCl fraction was affected by microbial activity. Hence, these δ18Op values likely reflected the oxygen isotopic values of the parent materials. The results suggested that phosphate oxygen isotope analyses could be an effective tool in order to trace phosphate sources, transformation processes, and its utilization by microorganisms in agricultural soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号