首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341篇
  免费   15篇
  国内免费   5篇
安全科学   8篇
废物处理   18篇
环保管理   53篇
综合类   67篇
基础理论   103篇
污染及防治   60篇
评价与监测   19篇
社会与环境   28篇
灾害及防治   5篇
  2023年   6篇
  2022年   5篇
  2021年   10篇
  2020年   14篇
  2019年   6篇
  2018年   29篇
  2017年   18篇
  2016年   27篇
  2015年   13篇
  2014年   18篇
  2013年   26篇
  2012年   21篇
  2011年   28篇
  2010年   12篇
  2009年   14篇
  2008年   20篇
  2007年   7篇
  2006年   12篇
  2005年   6篇
  2004年   8篇
  2003年   10篇
  2002年   7篇
  2001年   3篇
  2000年   6篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1985年   1篇
  1981年   2篇
  1980年   1篇
  1964年   1篇
  1940年   2篇
  1936年   1篇
  1935年   1篇
  1934年   1篇
  1932年   1篇
  1931年   1篇
  1928年   1篇
排序方式: 共有361条查询结果,搜索用时 93 毫秒
21.
Nitrous acid (HONO) and formaldehyde (HCHO) are important precursors for radicals and are believed to favor ozone formation significantly. Traffic emission data for both compounds are scarce and mostly outdated. A better knowledge of today's HCHO and HONO emissions related to traffic is needed to refine air quality models. Here the authors report results from continuous ambient air measurements taken at a highway junction in Houston, Texas, from July 15 to October 15, 2009. The observational data were compared with emission estimates from currently available mobile emission models (MOBILE6; MOVES [MOtor Vehicle Emission Simulator]). Observations indicated a molar carbon monoxide (CO) versus nitrogen oxides (NOx) ratio of 6.01 ± 0.15 (r 2 = 0.91), which is in agreement with other field studies. Both MOBILE6 and MOVES overestimate this emission ratio by 92% and 24%, respectively. For HCHO/CO, an overall slope of 3.14 ± 0.14 g HCHO/kg CO was observed. Whereas MOBILE6 largely underestimates this ratio by 77%, MOVES calculates somewhat higher HCHO/CO ratios (1.87) than MOBILE6, but is still significantly lower than the observed ratio. MOVES shows high HCHO/CO ratios during the early morning hours due to heavy-duty diesel off-network emissions. The differences of the modeled CO/NOx and HCHO/CO ratios are largely due to higher NOx and HCHO emissions in MOVES (30% and 57%, respectively, increased from MOBILE6 for 2009), as CO emissions were about the same in both models. The observed HONO/NOx emission ratio is around 0.017 ± 0.0009 kg HONO/kg NOx which is twice as high as in MOVES. The observed NO2/NOx emission ratio is around 0.16 ± 0.01 kg NO2/kg NOx, which is a bit more than 50% higher than in MOVES. MOVES overestimates the CO/CO2 emission ratio by a factor of 3 compared with the observations, which is 0.0033 ± 0.0002 kg CO/kg CO2. This as well as CO/NOx overestimation is coming from light-duty gasoline vehicles.
Implications: Nitrous acid (HONO) and formaldehyde (HCHO) are important precursors for radicals that ultimately contribute to ozone formation. There still exist uncertainties in emission sources of HONO and HCHO and thus regional air quality modeling still tend to underestimate concentrations of free radicals in the atmosphere. This paper demonstrates that the latest U.S. Environmental Protection Agency (EPA) traffic emission model MOVES still shows significant deviations from observed emission ratios, in particular underestimation of HCHO/CO and HONO/NOx ratios. Improving the performance of MOVES may improve regional air quality modeling.  相似文献   
22.
Influence of biochar on nitrogen fractions in a coastal plain soil   总被引:3,自引:0,他引:3  
Interest in the use of biochar from pyrolysis of biomass to sequester C and improve soil productivity has increased; however, variability in physical and chemical characteristics raises concerns about effects on soil processes. Of particular concern is the effect of biochar on soil N dynamics. The effect of biochar on N dynamics was evaluated in a Norfolk loamy sand with and without NHNO. High-temperature (HT) (≥500°C) and low-temperature (LT) (≤400°C) biochars from peanut hull ( L.), pecan shell ( Wangenh. K. Koch), poultry litter (), and switchgrass ( L.) and a fast pyrolysis hardwood biochar (450-600°C) were evaluated. Changes in inorganic, mineralizable, resistant, and recalcitrant N fractions were determined after a 127-d incubation that included four leaching events. After 127 d, little evidence of increased inorganic N retention was found for any biochar treatments. The mineralizable N fraction did not increase, indicating that biochar addition did not stimulate microbial biomass. Decreases in the resistant N fraction were associated with the high pH and high ash biochars. Unidentified losses of N were observed with HT pecan shell, HT peanut hull, and HT and LT poultry litter biochars that had high pH and ash contents. Volatilization of N as NH in the presence of these biochars was confirmed in a separate short-term laboratory experiment. The observed responses to different biochars illustrate the need to characterize biochar quality and match it to soil type and land use.  相似文献   
23.
The DSS/2 software system was used to numerically simulate oxygen stratification effects in a typical industrial boiler stack. The model developed for the simulation involves turbulent mass transfer in a tube with a constant, high mass flux from the walls of the tube. The concentration profile is considered to be developing, but the velocity profile is assumed to be fully developed. The model is for a gaseous system at constant temperature and pressure; the transport properties are shown to be constant. The universal velocity profile for turbulent flow and von Karman’s expressions for the turbulent eddy diffusivity are incorporated in the model. An expression for a wall concentration profile corresponding to conditions of high mass flux at the wall is developed. The model is then expressed as a system of partial differential equations which are solved using the numerical method of lines together with the DSS/2 numerical integration system. The resulting concentration profiles are presented for various flux rates which might be encountered in a typical stack. These profiles indicate that a potential for oxygen stratification in stacks does exist; they also suggest that careful placement of the oxygen cell probe can help minimize such errors.  相似文献   
24.
Physical characterization and chemical analysis of settled dusts collected in Xi’an from November 2007 to December 2008 show that (1) dust deposition rates ranged from 14.6 to 350.4 g m−2 yr−1. The average deposition rate (76.7 g m−2 yr−1) ranks the 11th out of 56 dust deposition rates observed throughout the world. The coal-burning power was the major particle source; (2) on average (except site 4), ∼10% of the settled dusts having size <2.6, ∼30% having size <10.5, and >70% having size <30 μm; (3) the concentrations for 20 out of 27 elements analyzed were upto 18 times higher than their soil background values in China. With such high deposition rates of dusts that contain elevated levels of toxic elements, actions should be taken to reduce emission and studies are needed to assess the potential impacts of settled particles on surface ecosystem, water resource, and human health in the area.  相似文献   
25.
Biomarkers comprising activities of biotransformation enzymes (ethoxyresorufin-O-deethylase -EROD-, dibenzylfluorescein dealkylase -DBF-, glutathione S-transferase -GST), antioxidant enzymes (glutathione reductase -GR- and glutathione peroxidase -GPX), lipid peroxidation -LPO- and DNA strand breaks were analyzed in the clam Ruditapes philippinarum caged at Cádiz Bay, Santander Bay and Las Palmas de Gran Canaria (LPGC) Port (Spain). Sediments were characterized. Digestive gland was the most sensitive tissue to sediment contamination. In Cádiz Bay, changes in LPO regarding day 0 were related with metals. In LPGC Port, DBF, EROD, and GST activity responses suggested the presence of undetermined contaminants which might have led to DNA damage. In Santander Bay, PAHs were related with EROD activity, organic and metal contamination was found to be associated with GR and GST activities and DNA damage presented significant (p < 0.05) induction. R. philippinarum was sensitive to sediment contamination at biochemical level. Biomarkers allowed chemical exposure and sediment quality assessment.  相似文献   
26.
27.
The inadequate and indiscriminate disposal of sugarcane vinasse in soils and water bodies has received much attention since decades ago, due to environmental problems associated to this practice. Vinasse is the final by-product of the biomass distillation, mainly for the production of ethanol, from sugar crops (beet and sugarcane), starch crops (corn, wheat, rice, and cassava), or cellulosic material (harvesting crop residues, sugarcane bagasse, and wood). Because of the large quantities of vinasse produced, alternative treatments and uses have been developed, such as recycling of vinasse in fermentation, fertirrigation, concentration by evaporation, and yeast and energy production. This review was aimed at examining the available data on the subject as a contribution to update the information on sugarcane vinasse, from its characteristics and chemical composition to alternatives uses in Brazil: fertirrigation, concentration by evaporation, energy production; the effects on soil physical, chemical and biological properties; its influence on seed germination, its use as biostimulant and environmental contaminant. The low pH, electric conductivity, and chemical elements present in sugarcane vinasse may cause changes in the chemical and physical–chemical properties of soils, rivers, and lakes with frequent discharges over a long period of time, and also have adverse effects on agricultural soils and biota in general. Thus, new studies and green methods need to be developed aiming at sugarcane vinasse recycling and disposal.  相似文献   
28.
ABSTRACT: The effect of unsteadiness of dam releases on velocity and longitudinal dispersion of flow was evaluated by injecting a fluorescent dye into the Colorado River below Glen Canyon Dam and sampling for dye concentration at selected sites downstream. Measurements of a 26-kilometer reach of Glen Canyon, just below Glen Canyon Dam, were made at nearly steady dam releases of 139, 425, and 651 cubic meters per second. Measurements of a 380-kilometer reach of Grand Canyon were made at steady releases of 425 cubic meters per second and at unsteady releases with a daily mean of about 425 cubic meters per second. In Glen Canyon, average flow velocity through the study reach increased directly with discharge, but dispersion was greatest at the lowest of the three flows measured. In Grand Canyon, average flow velocity varied slightly from subreach to subreach at both steady and unsteady flow but was not significantly different at steady and unsteady flow over the entire study reach. Also, longitudinal dispersion was not significantly different during steady and unsteady flow. Long tails on the time-concentration curves at a site, characteristic of most rivers but not predicted by the one-dimensional theory, were not found in this study. Absence of tails on the curves shows that, at the measured flows, the eddies that are characteristic of the Grand Canyon reach do not trap water for a significant length of time. Data from the measurements were used to calibrate a one-dimensional flow model and a solute-transport model. The combined set of calibrated flow and solute-transport models was then used to predict velocity and dispersion at potential dam-release patterns.  相似文献   
29.
The soil microbial community plays a critical part in tropical ecosystem functioning through its role in the soil organic matter (SOM) cycle. This study evaluates the relative effects of soil type and land use on (i) soil microbial community structure and (ii) the contribution of SOM derived from the original forest vegetation to the functioning of pasture and sugarcane (Saccharum spp.) ecosystems. We used principal components analysis (PCA) of soil phospholipid fatty acid (PLFA) profiles to evaluate microbial community structure and PLFA stable carbon isotope ratios (delta13C) as indicators of the delta13C of microbial substrates. Soil type mainly determined the relative proportions of gram positive versus gram negative bacteria whereas land use primarily determined the relative proportion of fungi, protozoa, and actinomycetes versus other types of microorganisms. Comparison of a simple model to our PLFA delta13C data from land use chronosequences indicates that forest-derived SOM is actively cycled for appreciably longer times in sugarcane ecosystems developed on Andisols (mean turnover time = 50 yr) than in sugarcane ecosystems developed on an Oxisol (mean turnover time = 13 yr). Our analyses indicate that soil chronosequence PLFA delta13C measurements can be useful indicators of the contribution that SOM derived from the original vegetation makes to continued ecosystem function under the new land use.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号