首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   50篇
  国内免费   176篇
安全科学   76篇
废物处理   45篇
环保管理   55篇
综合类   349篇
基础理论   98篇
污染及防治   222篇
评价与监测   34篇
社会与环境   36篇
灾害及防治   20篇
  2023年   16篇
  2022年   49篇
  2021年   37篇
  2020年   34篇
  2019年   25篇
  2018年   31篇
  2017年   36篇
  2016年   40篇
  2015年   47篇
  2014年   41篇
  2013年   61篇
  2012年   68篇
  2011年   64篇
  2010年   45篇
  2009年   46篇
  2008年   44篇
  2007年   46篇
  2006年   27篇
  2005年   19篇
  2004年   21篇
  2003年   16篇
  2002年   25篇
  2001年   21篇
  2000年   5篇
  1999年   9篇
  1998年   12篇
  1997年   10篇
  1996年   8篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1989年   2篇
  1988年   5篇
  1987年   2篇
  1984年   1篇
  1982年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有935条查询结果,搜索用时 93 毫秒
861.
本研究选取2016年天宫二号宽波段成像仪数据,联合1986、1996、2006年Landsat-5的历史遥感影像数据开展辽宁省部分沿海县市围填海变化监测,并分析湿地-围填海的转移关系。结果表明,1986~2016年,辽宁省部分沿海县市围填海面积持续增加,近10 a增加最多,面积为29499.73 hm2。围填海占用滩涂湿地面积各时期比较稳定,占用近海水域面积逐年上升,占用盐沼湿地面积逐年减少,围填海开发活动具有由陆地向近海转移的趋势。不同时期,湿地-围填海的转移关系有较大差异,进一步权衡不同转移类型的生态服务价值损失与经济价值增加的关系,对科学地进行围填海规划与实施具有指导意义。  相似文献   
862.
中国降水量区域变化稳定性研究   总被引:3,自引:2,他引:1  
利用中国气象中心160站点的实际观察资料,对中国半个世纪的降水变化进行了系统分析,发现中国的夏季降水变化稳定性有显著的纬度与海拔效应:纬度越高,方差值越小,降水变化的幅度也越小,稳定性越大;从海拔来看,海拔越高,降水稳定性越好,降水量的变化稳定性与海拔是成反相关关系.除过受区域水汽来源稳定性的影响,主要受全球降水稳定性的分布规律所制约;在海拔上,降水量稳定性的分布,除过受水汽来源影响外,还与水汽凝结的高度效应有一定的关系.  相似文献   
863.
本文以北京市城市绿地系统为研究对象,对其发展现状及其生态和社会功能进行了分析,并就目前城市绿地发展中存在的一些问题进行了探讨,最后提出了一些相应的发展对策。  相似文献   
864.
珠江澳门河口沉积物柱样中有机氯农药的垂直分布特征   总被引:34,自引:6,他引:28  
以GC/ECD内标法定量测定了沉积物柱样品中有机氯农药含量 ,以便探讨柱样中有机氯农药的垂直变化特征及可能的来源 .样品采自珠江澳门河口 ,柱样以2 10 Pb同位素法定年 .定量测定结果表明以BHCs、DDTs总量计算时 ,样品中含量分别为 0 4 8~ 2 6 2 8ng/ g、1 92~ 39 1 3ng/ g .柱样中农药含量随深度变化和珠江口区的水域水流量随年份的变化有着很好的对应性 .有机氯农药主要是来源于施用农药长期风化后的土壤 .样品中DDTs的浓度超过了河口沉积物化学品风险评价最低值标准 .  相似文献   
865.
The quality of cultivated consumed vegetables in relation to environmental pollution is a crucial issue for urban and peri-urban areas, which host the majority of people at the global scale. In order to evaluate the fate of metals in urban soil–plant–atmosphere systems and their consequences on human exposure, a field study was conducted at two different sites near a waste incinerator (site A) and a highway (site B). Metal concentrations were measured in the soil, settled atmospheric particulate matter (PM) and vegetables. A risk assessment was performed using both total and bioaccessible metal concentrations in vegetables. Total metal concentrations in PM were (mg kg?1): (site A) 417 Cr, 354 Cu, 931 Zn, 6.3 Cd and 168 Pb; (site B) 145 Cr, 444 Cu, 3289 Zn, 2.9 Cd and 396 Pb. Several total soil Cd and Pb concentrations exceeded China’s Environmental Quality Standards. At both sites, there was significant metal enrichment from the atmosphere to the leafy vegetables (correlation between Pb concentrations in PM and leaves: r = 0.52, p < 0.05) which depended on the plant species. Total Cr, Cd and Pb concentrations in vegetables were therefore above or just under the maximum limit levels for foodstuffs according to Chinese and European Commission regulations. High metal bioaccessibility in the vegetables (60–79 %, with maximum value for Cd) was also observed. The bioaccessible hazard index was only above 1 for site B, due to moderate Pb and Cd pollution from the highway. In contrast, site A was considered as relatively safe for urban agriculture.  相似文献   
866.
Phenol removal by n/m Fe in the presence of H2O2 was highly effective. Increasing the amounts of n/m Fe and H2O2?increased the phenol removal rate. Phenol removal was decreased with an increase in the concentration of phenol. The natural pH (6.9) of the solution was highly effective for phenol removal. The pseudo-first-order kinetics was best fitted for the degradation of phenol. The study investigates the magnetic separation of Fe from automobile shredder residue (ASR) (<0.25 mm) and its application for phenol degradation in water. The magnetically separated Fe was subjected to an ultrasonically assisted acid treatment, and the degradation of phenol in an aqueous solution using nano/micro-size Fe (n/m Fe) was investigated in an effort to evaluate the possibility of utilizing n/m Fe to remove phenol from wastewater. The prepared n/m Fe was analyzed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The effects of the dosages of n/mFe, pH, concentration of phenol and amount of H2O2 on phenol removal were evaluated. The results confirm that the phenol degradation rate was improved with an increase in the dosages of n/mFe and H2O2; however, the rate is reduced when the phenol concentration is higher. The degradation of phenol by n/mFe followed the pseudo-first-order kinetics. The value of the reaction rate constant (k) was increased as the amounts of n/m Fe and H2O2 increased. Conversely, the value of k was reduced when the concentration of phenol was increased. The probable mechanism behind the degradation of phenol by n/m Fe is the oxidation of phenol through hydroxyl radicals which are produced during the reaction between H2O2 and n/m Fe.  相似文献   
867.
Water-dissolved oxygen was supplied into anaerobic aquifer , which oxidized Fe(II), Mn(II) and trivalent arsenic and changed them into undissolved solid matter through hydrolysis, precipitation, co-precipitation and adsorption processes. The experiment was carried out on the column imitated a bore core of anaerobic aquifer with water phase containing Fe(II), Mn(II), As(III) concentration of 45.12 mg/L, 14.52 mg/L, 219.4 μg/L, respectively and other ions similarly composition in groundwater. After 6 days of air supply, concentration of iron reduced to 0.38 mg/L, manganese to 0.4 mg/L, arsenic to 9.8 μg/L (equivalent 99.16% of iron, 97.25% of manganese and 95.53% of arsenic fixed), and for other ions, the concentration changed almost according to general principles. Ion phosphate and silicate strongly influenced on arsenic removal but supported iron and manganese precipitation from water phase. Based on the experimental results, new model of groundwater exploitation was proposed.  相似文献   
868.
Impact of consistent boundary layer mixing approaches between NAM and CMAQ   总被引:1,自引:0,他引:1  
Discrepancies in grid structure, dynamics and physics packages in the offline coupled NWS/NCEP NAM meteorological model with the U.S. Environmental Protection Agency Community Multiscale Air Quality (CMAQ) model can give rise to inconsistencies. This study investigates the use of three vertical mixing schemes to drive chemistry tracers in the National Air Quality Forecast Capability (NAQFC). The three schemes evaluated in this study represent various degrees of coupling to improve the commonality in turbulence parameterization between the meteorological and chemistry models. The methods tested include: (1) using NAM predicted TKE-based planetary boundary height, h, as the prime parameter to derive CMAQ vertical diffusivity; (2) using the NAM mixed layer depth to determine h and then proceeding as in (1); and (3) using NAM predicted vertical diffusivity directly to parameterize turbulence mixing within CMAQ. A two week period with elevated surface O3 concentrations during the summer 2006 has been selected to test these schemes in a sensitivity study. The study results are verified and evaluated using the EPA AIRNow monitoring network and other ozonesonde data. The third method is preferred a priori as it represents the tightest coupling option studied in this work for turbulent mixing processes between the meteorological and air quality models. It was found to accurately reproduce the upper bounds of turbulent mixing and provide the best agreement between predicted h and ozonesonde observed relative humidity profile inferred h for sites investigated in this study. However, this did not translate into the best agreement in surface O3 concentrations. Overall verification results during the test period of two weeks in August 2006, did not show superiority of this method over the other 2 methods in all regions of the continental U.S. Further efforts in model improvement for the parameterizations of turbulent mixing and other surface O3 forecast related processes are warranted.  相似文献   
869.
A sensitivity study is performed to examine the impact of lateral boundary conditions (LBCs) on the NOAA-EPA operational Air Quality Forecast Guidance over continental USA. We examined six LBCS: the fixed profile LBC, three global LBCs, and two ozonesonde LBCs for summer 2006. The simulated results from these six runs are compared to IONS ozonesonde and surface ozone measurements from August 1 to 5, 2006. The choice of LBCs can affect the ozone prediction throughout the domain, and mainly influence the predictions in upper altitude or near inflow boundaries, such as the US west coast and the northern border. Statistical results shows that the use of global model predictions for LBCs could improve the correlation coefficients of surface ozone prediction over the US west coast, but could also increase the ozone mean bias in most regions of the domain depending on global models. In this study, the use of the MOZART (Model for Ozone And Related chemical Tracers) prediction for CMAQ (Community Multiscale Air Quality) LBC shows a better surface ozone prediction than that with fixed LBC, especially over the US west coast. The LBCs derived from ozonesonde measurements yielded better O3 correlations in the upper troposphere.  相似文献   
870.
Kang N  Hua I  Rao PS 《Chemosphere》2006,63(10):1685-1698
The Fenton's system is applied to the destruction of perchloroethylene (PCE) present as a dense non-aqueous phase liquid (DNAPL) in soil slurry systems; the initial concentration of PCE was 45 times higher than its aqueous solubility. Studies were conducted in two matrices: Ottawa sand and soil from Warsaw, IN. In Ottawa sand, a 60-62% decrease in PCE concentration was observed, and Cl(-) recovery was 47-58%, whereas in Warsaw soil, a 44-49% decrease in PCE concentration and a Cl(-) recovery of 40-42% were observed after the addition of 600 mM H(2)O(2) and 10 mM dissolved iron. Significantly enhanced destruction resulted during application of N-(2-hydroxyethyl) iminodiacetic acid (HEIDA) to Warsaw soil. For example, in the absence of HEIDA in Warsaw soil, 36% PCE loss and 33% Cl(-) release were observed at 600 mM H(2)O(2) and 5 mM Fe(III), while 74% PCE loss and 63% Cl(-) release were achieved at 600 mM H(2)O(2) and 5 mM Fe(III)-HEIDA. For both soils, the catalytic activities of Fe(II) and Fe(III) were nearly equivalent. These findings clearly demonstrate that system design can be optimized with regard to process variables in Fenton's treatment of DNAPL in soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号