首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17524篇
  免费   282篇
  国内免费   326篇
安全科学   612篇
废物处理   738篇
环保管理   2599篇
综合类   2922篇
基础理论   4498篇
环境理论   7篇
污染及防治   4604篇
评价与监测   1007篇
社会与环境   1020篇
灾害及防治   125篇
  2022年   165篇
  2021年   163篇
  2020年   182篇
  2019年   142篇
  2018年   287篇
  2017年   259篇
  2016年   398篇
  2015年   318篇
  2014年   449篇
  2013年   1413篇
  2012年   608篇
  2011年   898篇
  2010年   669篇
  2009年   760篇
  2008年   838篇
  2007年   875篇
  2006年   719篇
  2005年   607篇
  2004年   623篇
  2003年   564篇
  2002年   543篇
  2001年   644篇
  2000年   518篇
  1999年   316篇
  1998年   210篇
  1997年   228篇
  1996年   221篇
  1995年   267篇
  1994年   209篇
  1993年   210篇
  1992年   174篇
  1991年   183篇
  1990年   178篇
  1989年   184篇
  1988年   153篇
  1987年   134篇
  1986年   156篇
  1985年   143篇
  1984年   190篇
  1983年   147篇
  1982年   171篇
  1981年   157篇
  1980年   130篇
  1979年   149篇
  1978年   94篇
  1977年   98篇
  1975年   88篇
  1974年   93篇
  1973年   86篇
  1972年   96篇
排序方式: 共有10000条查询结果,搜索用时 72 毫秒
971.
ABSTRACT

The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a “bottom-up” engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.  相似文献   
972.
Abstract

A computer model called the Ozone Risk Assessment Model (ORAM) was developed to evaluate the health effects caused by ground-level ozone (O3) exposure. ORAM was coupled with the U.S. Environmental Protection Agency’s (EPA) Third-Generation Community Multiscale Air Quality model (Models-3/CMAQ), the state-of-the-art air quality model that predicts O3 concentration and allows the examination of various scenarios in which emission rates of O3 precursors (basically, oxides of nitrogen [NOx] and volatile organic compounds) are varied. The principal analyses in ORAM are exposure model performance evaluation, health-effects calculations (expected number of respiratory hospital admissions), economic valuation, and sensitivity and uncertainty analysis through a Monte Carlo simulation. As a demonstration of the system, ORAM was applied to the eastern Tennessee region, and the entire O3 season was simulated for a base case (typical emissions) and three different emission scenarios. The results indicated that a synergism occurs when reductions in NOx emissions from mobile and point sources were applied simultaneously. A 12.9% reduction in asthma hospital admissions is expected when both mobile and point source NOx emissions are reduced (50 and 70%, respectively) versus a 5.8% reduction caused by mobile source and a 3.5% reduction caused by point sources when these emission sources are reduced individually.  相似文献   
973.
Abstract

Observations of the mass and chemical composition of particles less than 2.5 μm in aerodynamic diameter (PM2.5), light extinction, and meteorology in the urban Baltimore-Washington corridor during July 1999 and July 2000 are presented and analyzed to study summertime haze formation in the mid-Atlantic region. The mass fraction of ammoniated sulfate (SO4 2-) and carbonaceous material in PM2.5 were each ~50% for cleaner air (PM2.5 < 10 μg/m3) but changed to ~60% and ~20%, respectively, for more polluted air (PM2.5 > 30 μg/m3). This signifies the role of SO4 2- in haze formation. Comparisons of data from this study with the Interagency Monitoring of Protected Visual Environments network suggest that SO4 2? is more regional than carbonaceous material and originates in part from upwind source regions. The light extinction coefficient is well correlated to PM2.5 mass plus water associated with inorganic salt, leading to a mass extinction efficiency of 7.6 ± 1.7 m2/g for hydrated aerosol. The most serious haze episode occurring between July 15 and 19, 1999, was characterized by westerly transport and recirculation slowing removal of pollutants. At the peak of this episode, 1-hr PM2.5 concentration reached ~45 μg/m3, visual range dropped to ~5 km, and aerosol water likely contributed to ~40% of the light extinction coefficient.  相似文献   
974.
Abstract

The multivariate receptor model Unmix has been used to analyze a 3-yr PM2.5 ambient aerosol data set collected in Phoenix, AZ, beginning in 1995. The analysis generated source profiles and overall average percentage source contribution estimates (SCEs) for five source categories: gasoline engines (33 ± 4%), diesel engines (16 ± 2%), secondary SO4 2? (19 ± 2%), crustal/soil (22 ± 2%), and vegetative burning (10 ± 2%). The Unmix analysis was supplemented with scanning electron microscopy (SEM) of a limited number of filter samples for information on possible additional low-strength sources. Except for the diesel engine source category, the Unmix SCEs were generally consistent with an earlier multivariate receptor analysis of essentially the same data using the Positive Matrix Factorization (PMF) model. This article provides the first demonstration for an urban area of the capability of the Unmix receptor model.  相似文献   
975.
Abstract

Using an air quality model, two future urban scenarios induced by the construction of the new international airport for Mexico City are compared at a regional level. The air quality model couples the meteorology model MM5 and state-of-the-art photochemistry. The air quality comparison is made using metrics for the criterion gases selected for the study. From the two urban scenarios compared, the option for Tizayuca is moderately better than the option for Texcoco, because relative reductions in O3 and other photochemical pollutants are achieved over highly populated areas. Regardless of the site, the air quality for the central region of Mexico in the future will deteriorate. In the region of central Mexico, SO2 and NO2 will become important pollutants.  相似文献   
976.
Abstract

This project demonstrated the biofiltration of a trichloroethylene (TCE)-contaminated airstream generated by air stripping groundwater obtained from several wells located at the Anniston Army Depot, Anniston, AL. The effects of several critical process variables were investigated to evaluate technical and economic feasibility, define operating limits and preferred operating conditions, and develop design information for a full-scale biofilter system. Long-term operation of the demonstration biofilter system was conducted to evaluate the performance and reliability of the system under variable weather conditions. Propane was used as the primary substrate necessary to induce the production of a nonspecific oxygenase. Results indicated that the process scheme used to introduce propane into the biofiltration system had a significant impact on the observed TCE removal efficiency. TCE degradation rates were dependent on the inlet contaminant concentration as well as on the loading rate. No microbial inhibition was observed at inlet TCE concentrations as high as 87 parts per million on a volume basis.  相似文献   
977.
Abstract

Emission factors for selected volatile organic compounds (VOCs) and particulate emissions were developed while processing eight commercial grades of polycarbonate (PC) and one grade of a PC/acrylonitrile-butadiene-styrene (ABS) blend. A small commercial-type extruder was used, and the extrusion temperature was held constant at 304 °C. An emission factor was calculated for each substance measured and is reported as pounds released to the atmosphere/million pounds of polymer resin processed [ppm (wt/wt)]. Scaled to production volumes, these emission factors can be used by processors to estimate emission quantities from similar PC processing operations.  相似文献   
978.
Abstract

Environmental agencies are currently in the process of implementing a new air management program, which includes the improvement of fuel quality. In this work, exhaust emissions data and estimated relative risk for various fuels testing in-use vehicles, equipped with three different exhaust emission control technologies, are presented. Aromatics, sulfur, and olefins contents; type of oxygenated compound; and Reid vapor pressure were varied. The aim also includes calculating the ozone (O3)of forming potential and a relative cancer risk of emissions from current and formulated gasoline blends in Mexico. The proposed gasoline decreases carbon monoxide, total hydrocarbons (THC), and nitrogen oxides emissions by 18 and 14%, respectively, when compared with gasoline sold in the rest of the country and within ozone nonattainment metropolitan areas in Mexico, respectively.  相似文献   
979.
Abstract

The goal of the Regional Haze Rule (RHR) is to return visibility in class I areas (CIAs) to natural levels, excluding weather-related events, by 2064. Whereas visibility, the seeing of scenic vistas, is a near instantaneous and sight-path-dependent phenomenon, reasonable progress toward the RHR goal is assessed by tracking the incremental changes in 5-yr average visibility. Visibility is assessed using a haze metric estimated from 24-hr average aerosol measurements that are made at one location representative of the CIA. It is assumed that, over the 5-yr average, the aerosol loadings and relative humidity along all of the site paths are the same and can be estimated from the 24-hr measurements. It is further assumed that any time a site path may be obscured by weather (e.g., clouds and precipitation), there are other site paths within the CIA that are not. Therefore, when calculating the haze metric, sampling days are not filtered for weather conditions. This assumption was tested by examining precipitation data from multiple monitors for four CIAs. It is shown that, in general, precipitation did not concurrently occur at all monitors for a CIA, and precipitation typically occurred 3-8 hr or less in a day. In a recent paper in this journal, Ryan asserts that the haze metric should include contributions from precipitation and conducted a quantitative assessment incorrectly based on the assumption that the Optec NGN-2 nephelometer measurements include the effects of precipitation. However, these instruments are programmed to shut down during rain events, and any data logged are in error. He further assumes that precipitation occurs as often on the haziest days as the clearest days and that precipitation light scattering (bprecip) is independent of geographic location and applied an average bprecip derived for Great Smoky Mountains to diverse locations including the Grand Canyon. Both of these assumptions are shown to be in error.  相似文献   
980.
Abstract

To reduce public exposure to diesel particulate matter (DPM), the California Air Resources Board has begun adoption of a series of rules to reduce these emissions from in-use heavy-duty vehicles. Passive diesel particulate filter (DPF) after-treatment technologies are a cost-effective method to reduce DPM emissions and have been used on a variety of vehicles worldwide. Two passive DPFs were interim-verified in California and approved federally for use in most 1994–2002 engine families for vehicles meeting min engine exhaust temperature requirements for successful filter regeneration. Some vehicles, however, may not be suited to passive DPFs because of lower engine exhaust temperatures. The purpose of this study was to determine the applicability of two types of passive DPFs to solid waste collection vehicles, the group of vehicles for which California recently mandated in-use DPM reductions. We selected 60 collection vehicles to represent the four main types of collection vehicle duty cycles—roll-offs, and front-end, rear, and side loaders—and collected second-by-second engine exhaust temperature readings for one week from each vehicle. As a group, the collection vehicles exhibited low engine exhaust temperatures, making the application of passive DPFs to these vehicles difficult. Only 35% of tested vehicles met the temperature requirements for one passive DPF, whereas 60% met the temperature requirements for the other. Engine exhaust temperatures varied by vehicle type. Side and front-end loaders met the engine exhaust temperature requirements in the greatest number of cases with ~50–90% achieving the required regeneration temperatures. Only 8–25% of the rear loader and roll-off collection vehicles met the engine exhaust temperature requirements. Solid waste collection vehicles represent a diverse fleet with a variety of duty cycles. Low engine exhaust temperatures will need to be addressed for successful use of passive DPFs in this application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号