全文获取类型
收费全文 | 55篇 |
免费 | 1篇 |
专业分类
安全科学 | 1篇 |
废物处理 | 2篇 |
环保管理 | 8篇 |
综合类 | 3篇 |
基础理论 | 28篇 |
污染及防治 | 11篇 |
评价与监测 | 2篇 |
社会与环境 | 1篇 |
出版年
2021年 | 1篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2017年 | 1篇 |
2016年 | 3篇 |
2014年 | 1篇 |
2013年 | 5篇 |
2012年 | 2篇 |
2011年 | 2篇 |
2010年 | 3篇 |
2009年 | 2篇 |
2008年 | 6篇 |
2007年 | 4篇 |
2006年 | 3篇 |
2005年 | 1篇 |
2004年 | 2篇 |
2003年 | 2篇 |
2002年 | 5篇 |
2001年 | 1篇 |
1999年 | 1篇 |
1996年 | 1篇 |
1994年 | 1篇 |
1985年 | 1篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1981年 | 1篇 |
1978年 | 1篇 |
排序方式: 共有56条查询结果,搜索用时 15 毫秒
41.
Demographic heterogeneity--variation among individuals in survival and reproduction--is ubiquitous in natural populations. Structured population models address heterogeneity due to age, size, or major developmental stages. However, other important sources of demographic heterogeneity, such as genetic variation, spatial heterogeneity in the environment, maternal effects, and differential exposure to stressors, are often not easily measured and hence are modeled as stochasticity. Recent research has elucidated the role of demographic heterogeneity in changing the magnitude of demographic stochasticity in small populations. Here we demonstrate a previously unrecognized effect: heterogeneous survival in long-lived species can increase the long-term growth rate in populations of any size. We illustrate this result using simple models in which each individual's annual survival rate is independent of age but survival may differ among individuals within a cohort. Similar models, but with nonoverlapping generations, have been extensively studied by demographers, who showed that, because the more "frail" individuals are more likely to die at a young age, the average survival rate of the cohort increases with age. Within ecology and evolution, this phenomenon of "cohort selection" is increasingly appreciated as a confounding factor in studies of senescence. We show that, when placed in a population model with overlapping generations, this heterogeneity also causes the asymptotic population growth rate lambda to increase, relative to a homogeneous population with the same mean survival rate at birth. The increase occurs because, even integrating over all the cohorts in the population, the population becomes increasingly dominated by the more robust individuals. The growth rate increases monotonically with the variance in survival rates, and the effect can be substantial, easily doubling the growth rate of slow-growing populations. Correlations between parent and offspring phenotype change the magnitude of the increase in lambda, but the increase occurs even for negative parent-offspring correlations. The effect of heterogeneity in reproductive rate on lambda is quite different: growth rate increases with reproductive heterogeneity for positive parent-offspring correlation but decreases for negative parent-offspring correlation. These effects of demographic heterogeneity on lambda have important implications for population dynamics, population viability analysis, and evolution. 相似文献
42.
Simultaneous estimation of survival, reproduction, and movement is essential to understanding how species maximize lifetime reproduction in environments that vary across space and time. We conducted a four-year, capture-recapture study of three populations of eastern tiger salamanders (Ambystoma tigrinum tigrinum) and used multistate mark-recapture statistical methods to estimate the manner in which movement, survival, and breeding probabilities vary under different environmental conditions across years and among populations and habitats. We inferred how individuals may mitigate risks of mortality and reproductive failure by deferring breeding or by moving among populations. Movement probabilities among populations were extremely low despite high spatiotemporal variation in reproductive success and survival, suggesting possible costs to movements among breeding ponds. Breeding probabilities varied between wet and dry years and according to whether or not breeding was attempted in the previous year. Estimates of survival in the nonbreeding, forest habitat varied among populations but were consistent across time. Survival in breeding ponds was generally high in years with average or high precipitation, except for males in an especially ephemeral pond. A drought year incurred severe survival costs in all ponds to animals that attempted breeding. Female salamanders appear to defer these episodic survival costs of breeding by choosing not to breed in years when the risk of adult mortality is high. Using stochastic simulations of survival and breeding under historical climate conditions, we found that an interaction between breeding probabilities and mortality limits the probability of multiple breeding attempts differently between the sexes and among populations. 相似文献
43.
Kendall D. Clements Isabel B. Y. Pasch Damian Moran Susan J. Turner 《Marine Biology》2007,150(6):1431-1440
Bacterial diversity in the microbial communities of posterior gut sections of three temperate marine herbivorous fish species
from New Zealand was characterised using Amplified Ribosomal DNA Restriction Analysis, and 16S rRNA gene amplification and
sequencing methods. The fish were collected in 1999–2000 in the Hauraki Gulf, New Zealand (35°54’–36°24’S, 174°48’–175°25’E).
The gastrointestinal bacterial communities of Kyphosus sydneyanus (Günther, 1886) (F. Kyphosidae), Odax pullus (Forster in Bloch and Schneider, 1801) (F. Labridae) and Aplodactylus arctidens Richardson, 1839 (F. Aplodactylidae) were dominated by five clades of bacteria, four of which belong to recognized clostridial
clusters. The clone libraries of K. sydneyanus and O. pullus contained sequences from most of these clades, but were dominated by members of clostridial clusters XI and XIVa, respectively.
The clone library of A. arctidens was dominated by members of clostridial cluster XIVb and an unassigned cluster containing Eubacterium desmolans and Papillibacter cinnaminovorans. The finding that strains of Firmicutes dominated the gastrointestinal microbial communities of all three fish species is consistent with the results of similar
studies on terrestrial vertebrate herbivores. This work thus contributes to the view that gastrointestinal symbionts in some
marine herbivorous fishes may play a similar role to those in terrestrial vertebrate herbivores studied to date. 相似文献
44.
45.
Gregory S. McMaster James C. Ascough II Debora A. Edmunds Larry E. Wagner Fred A. Fox Kendall C. DeJonge Neil C. Hansen 《Environmental Modeling and Assessment》2014,19(5):407-424
Since initial development of the EPIC model in 1989, the EPIC plant growth component has been incorporated into other erosion and crop management models (e.g., WEPS, WEPP, SWAT, ALMANAC, and GPFARM) and subsequently modified to meet research objectives of the model developers. This has resulted in different versions of the same base plant growth component. The objectives of this study are the following: (1) describe the standalone Unified Plant Growth Model (UPGM), initially derived from the WEPS plant growth model, to be used for merging enhancements from other EPIC-based plant growth models; and (2) describe and evaluate new phenology, seedling emergence, and canopy height sub-models derived from the Phenology Modular Modeling System (PhenologyMMS V1.2) and incorporated into UPGM. A 6-year (2005–2010) irrigated maize (Zea mays L.) study from northeast Colorado was used to calibrate and evaluate UPGM running both the original (i.e., based on WEPS) and new phenology, seedling emergence, and canopy height sub-models. Model statistics indicated the new sub-models usually resulted in better simulation results than the original sub-models. For example when comparing original and new sub-models, respectively, for predicting canopy height, the root mean square error (RMSE) was 53.7 and 40.7 cm, index of agreement (d) was 0.84 and 0.92, relative error (RE) was 26.0 and ?1.26 %, and normalized objective function (NOF) was 0.47 and 0.33. The new sub-models predict leaf number (old sub-models do not), with mean values for 4 years of 2.43 leaves (RMSE), 0.78 (d), 18.38 % (RE), and 0.27 (NOF). Simulating grain yield, final above ground biomass, and harvest index showed little difference when running the original or new sub-models. Both the new phenology and seedling emergence sub-models respond to varying water deficits, increasing the robustness of UPGM for more diverse environmental conditions. Future research will continue working to incorporate existing enhancements from other EPIC-based plant growth models to unify them into one model such as multispecies competition and N cycling. 相似文献
46.
The removal of dense non-aqueous phase liquids (DNAPL) in-situ remains one of the remediation industry's toughest burden. Numerous treatment methods have been applied in an effort to deal with this problem, most requiring many years of continued application to produce even marginally successful results. Current Environment Solutions (CES) has brought a new technology, known as Six-Phase Heating? (SPH), to bear on this problem. This new technology is proving capable of providing rapid remediation of DNAPL-contaminated sites at reasonable costs. 相似文献
47.
Toxicity of hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) to earthworm was evaluated. Both MNX and TNX had lethal and sublethal effects on earthworms. Exposure to MNX- or TNX-contaminated soil caused a significant concentration-dependent decrease in earthworm survival and growth. The lowest observed lethal concentration (LOLC) for both MNX and TNX was 100 and 200 mgkg(-1) soil dry weight in the sandy loam soil and in the silt loam soil, respectively. No earthworms survived for 14 days in MNX- or TNX-spiked soil at 500 mgkg(-1) soil dry weight. After 7 days exposure, the lowest observed effect concentration (LOEC) for earthworm growth was 50 mgkg(-1) soil dry weight for TNX and 100 mgkg(-1) soil dry weight for MNX in both soil types. The LC20 and LC50 for MNX in sandy loam soil were 114 and 262 mgkg(-1) and for TNX, they were 114 and 254 mgkg(-1) soil dry weight, respectively. The corresponding values for MNX and TNX in silt loam soil were 234 and 390 mgkg(-1) soil dry weight, respectively, and 200 and 362 mgkg(-1) soil dry weight, respectively. After 35 days exposure, earthworm growth was reduced 8-39% by TNX in sandy loam soil, whereas TNX only inhibited earthworm growth 5-18% at the same concentration range in silt loam soil. LC20 and LC50 for TNX were slightly lower than for MNX; this indicates that TNX was more toxic than MNX. No significant morphological or developmental abnormalities were observed in earthworms surviving exposure. 相似文献
48.
Tailings containing toxic qualities of heavy metals are a potential source of pollution. Stabilisation by vegetative methods have been found the most effective. In an attempt to vegetate tailings dams it has been noted that while certain milky latex containing plants can be grown without any preconditioning of the soil, almost any plant can be grown after proper conditioning. However, the plants grown there cannot be consumed by humans or cattle due to their high metal content. 相似文献
49.
John Boulanger Katherine C Kendall Jeffrey B Stetz David A Roon Lisette P Waits David Paetkau 《Ecological applications》2008,18(3):577-589
A fundamental challenge to estimating population size with mark-recapture methods is heterogeneous capture probabilities and subsequent bias of population estimates. Confronting this problem usually requires substantial sampling effort that can be difficult to achieve for some species, such as carnivores. We developed a methodology that uses two data sources to deal with heterogeneity and applied this to DNA mark-recapture data from grizzly bears (Ursus arctos). We improved population estimates by incorporating additional DNA "captures" of grizzly bears obtained by collecting hair from unbaited bear rub trees concurrently with baited, grid-based, hair snag sampling. We consider a Lincoln-Petersen estimator with hair snag captures as the initial session and rub tree captures as the recapture session and develop an estimator in program MARK that treats hair snag and rub tree samples as successive sessions. Using empirical data from a large-scale project in the greater Glacier National Park, Montana, USA, area and simulation modeling we evaluate these methods and compare the results to hair-snag-only estimates. Empirical results indicate that, compared with hair-snag-only data, the joint hair-snag-rub-tree methods produce similar but more precise estimates if capture and recapture rates are reasonably high for both methods. Simulation results suggest that estimators are potentially affected by correlation of capture probabilities between sample types in the presence of heterogeneity. Overall, closed population Huggins-Pledger estimators showed the highest precision and were most robust to sparse data, heterogeneity, and capture probability correlation among sampling types. Results also indicate that these estimators can be used when a segment of the population has zero capture probability for one of the methods. We propose that this general methodology may be useful for other species in which mark-recapture data are available from multiple sources. 相似文献
50.
Du Preez LH Kunene N Everson GJ Carr JA Giesy JP Gross TS Hosmer AJ Kendall RJ Smith EE Solomon KR Van Der Kraak GJ 《Chemosphere》2008,71(3):546-552
Reproductive success and development of F2 offspring from F1 adult African clawed frogs (Xenopus laevis) exposed to atrazine throughout larval development and as sexually mature adults was examined. Larval X. laevis were exposed to one of four nominal concentrations of atrazine (0, 1, 10, 25 microg atrazine/l) beginning 96 hr after fertilization and continuing through two years post-metamorphosis. Clutch size and survival of offspring were used as measurement endpoints to gauge reproductive success of the F1 frogs. Larval survivorship and time to metamorphosis were used to gauge developmental success of the F2 offspring from atrazine-exposed frogs. Testes in F1 and F2 frogs were examined for incidence of anomalies, such as testicular ovarian follicles, and sex ratios in F2 offspring were investigated to determine if exposure to atrazine caused trans-generational effects (effects on F2 individuals due to exposure of F1 individuals). There were no effects of any of the studied concentrations of atrazine on clutch size of F1 frogs. There were also no effects on hatching success or time to metamorphosis. Sex ratios did not differ between F2 offspring among treatments. There was no evidence to suggest a transgenerational effect of atrazine on spawning success or reproductive development of X. laevis. This is consistent with the presence of robust populations of X. laevis in areas where they are exposed to atrazine that has been used for several decades for weed control in production of corn. Our observations also are consistent with the results of most other studies of frogs where no effects were found to be associated with exposure to atrazine. Our data do not support the hypothesis that atrazine significantly affects reproductive fitness and development of frogs. 相似文献