首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   4篇
  国内免费   12篇
安全科学   11篇
废物处理   12篇
环保管理   17篇
综合类   26篇
基础理论   29篇
环境理论   1篇
污染及防治   77篇
评价与监测   9篇
社会与环境   4篇
灾害及防治   3篇
  2023年   1篇
  2022年   2篇
  2019年   1篇
  2018年   7篇
  2017年   12篇
  2016年   7篇
  2015年   7篇
  2014年   8篇
  2013年   19篇
  2012年   12篇
  2011年   13篇
  2010年   12篇
  2009年   9篇
  2008年   18篇
  2007年   16篇
  2006年   10篇
  2005年   10篇
  2004年   10篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  1994年   1篇
  1991年   1篇
  1978年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有189条查询结果,搜索用时 453 毫秒
161.
Nitrous acid (HONO) may cause adverse effects to mucous membranes and lung function when people are exposed to higher HONO concentrations than those present in typical indoor residential environments. Therefore, determination of HONO concentration in indoor environments is required to investigate occurrences of high HONO levels. In this work, a high-time-resolution measurement system was utilized to better understand the levels and dynamic behavior of HONO in an indoor environment. The performance of the in situ HONO analyzer applied to this work was evaluated using a 12-hr integrated annular denuder technique under ambient conditions. Both methods for the measurements of HONO were in good agreement, with a regression slope of 0.84, an intercept of 0.09, and correlation coefficient (r2) of 0.67. Indoor HONO and nitrogen oxide concentrations were also observed for approximately 5 days in winter in the living room of an apartment that had a gas range for cooking in the kitchen. Investigation of the relationships among nitric oxide (NO), nitrite (NO2), and HONO concentrations suggests that HONO production during combustion could be the result of direct emission, whereas the heterogeneous NO2 chemistry during the background period and after combustion was the possible pathway of HONO production. Controlled combustion experiments, performed at a burning rate of 50% valve setting, show peak HONO concentrations during the unvented combustion to be approximately 8-10 times higher than background levels depending on the time of day. At a burning rate setting of 50%, the peak concentration of HONO during unvented combustion was found to be 33-37% higher than those from "weak" (airflow = 340 m3/hr) and "strong" (airflow = 540 m3/hr) vented combustions. The decay rate of the HONO concentrations for the unvented combustion conditions was approximately 2-fold higher in the daytime than in the nighttime and significantly less than those of NO and NO2.  相似文献   
162.
Irfan MF  Goo JH  Kim SD  Hong SC 《Chemosphere》2007,66(1):54-59
The oxidation characteristics of NO over Pt/TiO2 (anatase, rutile) catalysts have been determined in a fixed bed reactor as a function of O2, CO and SO2 concentrations in the presence of 8% water. The conversion of NO to NO2 increases with increasing O2 concentration up to 12% and it levels off. This saturation effect is more pronounced over rutile-Pt/TiO2 (r-Pt/TiO2) than that of anatase-Pt/TiO2 (a-Pt/TiO2). The presence of CO increases NO oxidation significantly and this enhanced effect is more pronounced on a-Pt/TiO2 than that on r-Pt/TiO2 with increasing CO concentration at lower temperatures. The same effect is also observed on the catalysts with different Pt and tungsten oxide (WO3) loadings. With increasing Pt and WO3 loadings on TiO2 support (Pt-WO3/TiO2), formation of NO2 is high even at lower temperatures. The presence of SO2 significantly suppresses the oxidation of NO over both r-Pt/TiO2 and a-Pt/TiO2 catalysts but it is less pronounced due to low stability of sulfate on a-Pt/TiO2.  相似文献   
163.
The aim of this study was to measure the air concentrations of carbon dioxide (CO2) and formaldehyde (HCHO) in daycare centers to determine relevant influencing factors, including temperature, relative humidity (RH), type of facility, number of children, type of ventilation system, ventilation time, and air cleaning system. The authors measured HCHO, CO2, temperature, and RH in the center of classrooms in 289 daycare centers. Spearman’s correlation and Mann–Whitney analyses were used to examine the relationships and differences in HCHO and CO2 for varying temperatures, RH values, and categorical indoor environmental factors. There were no significant differences in the HCHO and CO2 air concentrations with varying numbers of children, ventilation times, or ventilation and air cleaning system types. However, both the HCHO and CO2 air concentrations were significantly different for varying RH values, which were divided into five categories (p < 0.001). Only the HCHO air concentrations were significantly different for varying temperatures, which were divided into five categories (p < 0.001). Significant correlations were found between HCHO air concentrations and the temperature (r = 0.35, p < 0.0001), RH (r = 0.51, p < 0.0001), and CO2 (r = 0.36, p < 0.0001). The study results support maintaining an appropriate temperature and RH range for reducing airborne HCHO in daycare centers. Further research is needed to elucidate the precise mechanisms responsible for the relationships observed in this study.

Implications: Data from 289 daycare centers in Seoul, South Korea, indicate that HCHO concentrations show a positive correlation with indoor temperature and relative humidity. This indicates that keeping temperatures low will help keep HCHO concentrations low, by both a direct and an indirect effect, since low temperatures also cause low relative humidity.  相似文献   

164.
This study investigated the effects of various soil conditions, including drying-rewetting, nitrogen deposition, and temperature rise, on the quantities and the composition of dissolved organic matter leached from forest and wetland soils. A set of forest and wetland soils with and without the nitrogen deposition were incubated in the growth chambers under three different temperatures. The moisture contents were kept constant, except for two-week drying intervals. Comparisons between the original and the treated samples revealed that drying-rewetting was a crucial environmental factor driving changes in the amount of dissolved organic carbon (DOC). The DOC was also notably increased by the nitrogen deposition to the dry forest soil and was affected by the temperature of the dry wetland soil. A parallel factor (PARAFAC) analysis identified three sub-fractions of the fluorescent dissolved organic matter (FDOM) from the fluorescence excitation–emission matrices (EEMs), and their compositions depended on drying-rewetting. The data as a whole, including the DOC and PARAFAC components and other optical indices, were possibly explained by the two main variables, which were closely related with the PARAFAC components and DOC based on principal component analysis (PCA). Our results suggested that the DOC and PARAFAC component information could provide a comprehensive interpretation of the changes in the soil-leached DOM in response to the different environmental conditions.  相似文献   
165.
In this study, the physicochemical properties of the char of Indonesian SM coal following heat treatment at various temperatures were evaluated using X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and morphological and specific surface area analysis. Based on these analyses, heat treatment of coal was determined to be the most effective in increasing the coal rank. In the XPS analysis, the C–O and C–O–C groups and quaternary-N species were found to be of a lower grade coal when the pretreatment temperature decreased, meanwhile the C–C group and pyridinic species increased. In the FT-IR analysis, the collapse of the C–O and C–O–C group was observed due to the collapse of the ether group. In SEM and Brunauer–Emmett–Teller (BET) analysis, a decrease in the ether group was shown to be accompanied with the formation of micropores.

Implications Recently, XPS analyses have been reported as coal surface analysis. Usually, they have reported the analysis of the coals with different rank. This study investigated the coal surface characteristics of the coals pretreated at different temperature using various analyses (BET, SEM, XPS, FT-IR), and this study can be the basis for other research and applications.  相似文献   
166.
TiO2-supported manganese oxide catalysts formed using different calcination temperatures were prepared by using the wet-impregnation method and were investigated for their activity in the low-temperature selective catalytic reduction (SCR) of NO by NH3 with respect to the Mn valence and lattice oxygen behavior. The surface and bulk properties of these catalysts were examined using Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and temperature-programmed desorption (TPD). Catalysts prepared using lower calcination temperatures, which contained Mn4+, displayed high SCR activity at low temperatures and possessed several acid sites and active oxygen. The TPD analysis determined that the Brönsted and Lewis acid sites in the Mn/TiO2 catalysts were important for the low-temperature SCR at 80~160 and 200~350 °C, respectively. In addition, the available lattice oxygen was important for attaining high NO to NO2 oxidation at low temperatures.

Implications: Recently, various Mn catalysts have been evaluated as SCR catalysts. However, there have been no studies on the relationship of adsorption and desorption properties and behavior of lattice oxygen according to the valence state for manganese oxides (MnOx). Therefore, in this study, the catalysts were prepared by the wet-impregnation method at different calcination temperatures in order to show the difference of manganese oxidation state. These catalysts were then characterized using various physicochemical techniques, including BET, XRD, TPR, and TPD, to understand the structure, oxidation state, redox properties, and adsorption and desorption properties of the Mn/TiO2 catalysts.  相似文献   
167.
Deokjeok Island is located off the west coast of the Korean Peninsula and is a suitable place to monitor the long-range transport of air pollutants from the Asian continent. In addition to pollutants, Asian dust particles are also transported to the island during long-range transport events. Episodic transport of dust and secondary particles was observed during intensive measurements in the spring (March 31-April 11) and fall (October 13-26) of 2009. In this study, the chemical characteristics of long-range-transported particles were investigated based on highly time-resolved ionic measurements with a particle-into-liquid system coupled with an online ion chromatograph (PILS-IC) that simultaneously measures concentrations of cations (Li+, Na , NH4+, K+, Ca2+, Mg2+) and anions (F-, C1-, NO3-, SO42-). The aerosol optical thickness (AOT) distribution retrieved by the modified Bremen Aerosol Retrieval (M-BAER) algorithm from moderate resolution imaging spectroradiometer (MODIS) satellite data confirmed the presence of a thick aerosol plume coming from the Asian continent towards the Korean peninsula. Seven distinctive events involving the long-range transport (LRT) of aerosols were identified and studied, the chemical components of which were strongly related to sector sources. Enrichment of acidic secondary aerosols on mineral dust particles, and even of sea-salt components, during transport was observed in this study. Backward trajectory, chemical analyses, and satellite aerosol retrievals identified two distinct events: a distinctively high [Ca2++Mg2]/[Na+] ratio (>2.0), which was indicative of a preprocessed mineral dust transport event, and a low [Ca2++Mg2+]/[Na+] ratio (<2.0), which was indicative of severe aging of sea-salt components on the processed dust particles. Particulate C1- was depleted by up to 85% in spring and 50% in the fall. A consistent fraction of carbonate replacement (FCR) averaged 0.53 in spring and 0.55 in the fall. Supporting evidences of C1- enrichment on the marine boundary layer prior to a dust front were also found. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for sector and air mass classifications of clean and LRT cases.  相似文献   
168.
Hwang SH  Park DU  Joo SI  Park HH  Yoon CS 《Chemosphere》2011,85(1):135-139
In this study, we assessed airborne endotoxin levels in university laboratories, hospital diagnostic laboratories, and a biowaste site. We also investigated indoor and outdoor sampling, sampling site, type of ventilation system, presence of open biowaste boxes, weather, and detection of Gram-negative bacteria (GNB). A total of 69 air samples were collected from 11 facilities in three institutions. Average total airborne endotoxin levels ranged from <0.01 to 10.02 EU m−3, with an overall mean of 1.03 EU m−3. Endotoxin levels were high in window-ventilated facilities, in facilities in which GNB were detected; levels were also high when it was rainy (all ps < 0.05). Endotoxin levels were significantly correlated with humidity (r = 0.70, p < 0.01). The presence of HVAC; humidity; and the presence of open biowaste boxes affect endotoxin levels in laboratories.  相似文献   
169.
Abstract

Objective: The purpose of this study is to investigate the injury patterns of noncatastrophic accidents by individual age groups.

Methods: Data were collected from the Korean In-Depth Accident Study database based on actual accident investigation. The noncatastrophic criteria were classified according to U.S. experts from the Centers for Disease Control and Prevention’s recommendations for field triage guidelines of high-risk automobile crash criteria by vehicle intrusions more than 12 in. on occupant sites (including the roof) and more than 18 in. on any site. The Abbreviated Injury Scale (AIS) was used to determine injury patterns for each body region. Severely injured patients were classified as Maximum Abbreviated Injury Scale (MAIS) 3 or higher.

Results: In this study, the most significant injury regions were the head and neck, extremities, and thorax. In addition, the incidence of severe injury among elderly patients was nearly 1.6 times higher than that of non-elderly patients. According to age group, injured body regions among the elderly were the thorax, head and neck, and extremities, in that order. For the non-elderly groups, these were head and neck, extremities, and thorax. Severe injury rates were slightly different for the elderly group (head and neck, abdomen) and non-elderly group (thorax, head and neck).

Conclusions: In both age groups, the rate of severe injury is proportional to an increase in crush extent zone. Front airbag deployment may have a relatively significant relationship to severe injuries.  相似文献   
170.
This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号