首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11180篇
  免费   16篇
  国内免费   71篇
安全科学   76篇
废物处理   917篇
环保管理   1377篇
综合类   1082篇
基础理论   3329篇
环境理论   2篇
污染及防治   2356篇
评价与监测   1157篇
社会与环境   955篇
灾害及防治   16篇
  2023年   20篇
  2022年   37篇
  2021年   36篇
  2020年   15篇
  2019年   30篇
  2018年   1502篇
  2017年   1406篇
  2016年   1256篇
  2015年   164篇
  2014年   84篇
  2013年   145篇
  2012年   553篇
  2011年   1437篇
  2010年   775篇
  2009年   699篇
  2008年   985篇
  2007年   1316篇
  2006年   101篇
  2005年   105篇
  2004年   115篇
  2003年   117篇
  2002年   159篇
  2001年   61篇
  2000年   31篇
  1999年   14篇
  1998年   18篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1984年   12篇
  1983年   12篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1965年   1篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 834 毫秒
401.
We describe the development and parameterization of a grid-based model of African savanna vegetation processes. The model was developed with the objective of exploring elephant effects on the diversity of savanna species and structure, and in this formulation concentrates on the relative cover of grass and woody plants, the vertical structure of the woody plant community, and the distribution of these over space. Grid cells are linked by seed dispersal and fire, and environmental variability is included in the form of stochastic rainfall and fire events. The model was parameterized from an extensive review of the African savanna literature; when available, parameter values varied widely. The most plausible set of parameters produced long-term coexistence between woody plants and grass, with the tree–grass balance being more sensitive to changes in parameters influencing demographic processes and drought incidence and response, while less sensitive to fire regime. There was considerable diversity in the woody structure of savanna systems within the range of uncertainty in tree growth rate parameters. Thus, given the paucity of height growth data regarding woody plant species in southern African savannas, managers of natural areas should be cognizant of different tree species growth and damage response attributes when considering whether to act on perceived elephant threats to vegetation.  相似文献   
402.
The concentrations of ammonium NH4+, nitrate NO3-, and nitrite NO2- ions were recorded along with ammonia (NH(3)) emission from a fertilized rice field located in the Kwangju province in South Korea over a period of 4 months (June to October 2006). The highest magnitude of NH(3) flux was 20,754 microg m(-2) h(-1), while the average flux value over the entire sampling period was 2,395 microg m(-2) h(-1). The highest ionic concentrations were 1.67, 0.44, and 0.71 ppm for NH4+, NO3-, and NO2- ions, respectively. Possible effects of soil pH on NH(3) fluxes were detected, as they concurrently exhibited a gradual and periodic change during the sampling period. Positive correlations existed between concentrations of NH4+ and NO2- ions and the soil pH. Positive correlations also existed between NH(3) emission flux and ambient (and water) temperatures. Results indicated that fertilizer application to rice can lead to significant emission of NH(3) along with NH4+ and NO3- ions.  相似文献   
403.
Although many leaching methods have been used for various purposes by research groups, industries, and regulators, there is still a need for a simple but comprehensive approach to leaching coal utilization by-products and other granular materials in order to estimate potential release of heavy metals when these materials are exposed to natural fluids. A serial batch characterization method has been developed at the National Energy Technology Laboratory that can be completed in 2–3 days to serve as a screening tool. The procedure provides an estimate of cumulative metals release under varying pH conditions, and leaching the sample at increasing liquid/solid ratios can indicate the rate at which this process will occur. This method was applied to eight fly ashes, adapted to the acidic or alkaline nature of the ash. The leachates were analyzed for 30 elements. The test was run in quadruplicate, and the relative standard deviation (RSD) was used as a measure of method reproducibility. RSD values are between 0.02 and 0.70, with the majority of the RSD values less than 0.3. The serial batch leaching procedure was developed as a simple, relatively quick, yet comprehensive method of estimating the risk of heavy metal release from fly ash when it is exposed to natural fluids, such as acid rain or groundwater. Tests on a random selection of coal fly ashes have shown it to be a reasonably precise method for estimating the availability and long-term release of cations from fly ash.  相似文献   
404.
Oh YJ  Song H  Shin WS  Choi SJ  Kim YH 《Chemosphere》2007,66(5):858-865
The effect of two surfaces (amorphous silica and silica sand) on the reduction of chromium(VI) by zero-valent iron (Fe(0)) was investigated using batch reactors. The amendment of both surfaces significantly increased the rate and extent of Cr(VI) removal. The rate enhancement by amended surfaces is presumed to result from scavenging of Fe(0)-Cr(VI) reaction products by the provided surfaces, which minimized surface deactivation of Fe(0). The rate enhancing effect was greater for silica compared to sand, and the difference is attributed to silica's higher surface area, greater affinity for reaction products and pH buffering effect. For a given mass of Fe(0), the reactivity and longevity of Fe(0) to treat Cr(VI) increased with increasing dose of silica. Elemental analyses of the reacted iron and silica revealed that chromium removed from the solution was associated with both surfaces, with its mass distribution being approximately 1:1 per mass of iron and silica. The overall result suggests reductive precipitation was a predominant Cr(VI) removal pathway, which involves initial reduction of Cr(VI) to Cr(III), followed by formation of Cr(III)/Fe(III) hydroxides precipitates.  相似文献   
405.
Kim do H  Mulholland JA  Ryu JY 《Chemosphere》2007,67(9):S135-S143
Polychlorinated naphthalenes (PCNs) formed along with dibenzo-p-dioxin and dibenzofuran products in the slow combustion of dichlorophenols (DCPs) at 600 degrees C were identified. Each DCP reactant produced a unique set of PCN products. Major PCN congeners observed in the experiments were consistent with products predicted from a mechanism involving an intermediate formed by ortho-ortho carbon coupling of phenoxy radicals; polychlorinated dibenzofurans (PCDFs) are formed from the same intermediate. Tautomerization of the intermediate and H2O elimination produces PCDFs; alternatively, CO elimination to form dihydrofulvalene and fusion produces naphthalenes. Only trace amounts of tetrachloronaphthalene congeners were formed, suggesting that the preferred PCN formation pathways from chlorinated phenols involve loss of chlorine. 3,4-DCP produced the largest yields of PCDF and PCN products with two or more chlorine substituents. 2,6-DCP did not produce tri- or tetra-chlorinated PCDF or PCN congeners. It did produce 1,8-DCN, however, which could not be explained.  相似文献   
406.
Ambient air monitoring of PCDD/Fs and co-PCBs in Gyeonggi-do, Korea   总被引:3,自引:0,他引:3  
Kim DG  Min YK  Jeong JY  Kim GH  Kim JY  Son CS  Lee DH 《Chemosphere》2007,67(9):1722-1727
We started the monitoring for PCDD/Fs in ambient air and soil in August 2001, and co-PCBs in January 2002. Decreasing of PCDD/Fs and co-PCBs levels in ambient air were observed. The higher PCDD/Fs levels were found in winter and lower in autumn. We found that the industrial incinerators influenced the PCDD/Fs levels in ambient air. In the 2,3,7,8-substituted PCDD/Fs concentration profiles, the three major congeners occupied 67% of the total mass. In case of co-PCBs, PCB#118, #105 and #77 were observed as the main congeners. Five cluster groups discriminated by ratio of four components, O(8)CDD, 1,2,3,4,6,7,8-H(7)CDD, 1,2,3,4,6,7,8-H(7)CDF and O(8)CDF, were obtained from HCA (hierarchical cluster analysis).  相似文献   
407.
408.
Kim M  Kim S  Yun SJ  Kim DG  Chung GS 《Chemosphere》2007,69(3):479-484
A survey was conducted in South Korea to determine residual levels and dietary intake of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) from meat. Altogether 119 domestic and 164 imported samples of beef, pork, and chicken were examined. The mean levels of PCDD/Fs in upper bound were 0.21, 0.22, and 0.04pg WHO-TEQ/g fat for beef, pork, and chicken, respectively. The low level of PCDD/Fs in chicken probably resulted from the low fat content in the samples used. The samples were separated into domestic and imported products in order to investigate the sources of contamination. PCDFs were the more dominant congeners in domestic beef and were similar to those found from emission of incineration. However, the congener profiles of domestic beef and incineration were difficult to compare because the environmental fate and animal metabolism were involved. The upper bound dietary intake of PCDD/Fs from beef, pork and chicken was calculated to be 0.04pg/WHO-TEQ/kgbw/day. The combined consumption of beef, pork, and chicken was found to be 84.8g per day for a person weighing 60kg and represented 5.7% of their total daily food intake.  相似文献   
409.
Background, Goals and Scope During the last years the miniaturization of toxicity test systems for rapid and parallel measurements of large quantities of samples has often been discussed. For unicellular algae as well as for aquatic macrophytes, fluorescence-based miniaturized test systems have been introduced to analyze photosystem II (PSII) inhibitors. Nevertheless, high-throughput screening should also guarantee the effect detection of a broad range of toxicants in order to ensure routinely applicable, high-throughput measuring device experiments which can cover a broad range of toxicants and modes of action others than PSII inhibition. Thus, the aim of this study was to establish a fast and reproducible measuring system for non-PSII inhibitors for aquatic macrophyte species to overcome major limitations for use. Methods A newly developed imaging pulse-amplitude-modulated chlorophyll fluorometer (I-PAM) was applied as an effect detector in short-term bioassays with the aquatic macrophyte species Lemna minor. This multiwell-plate based measuring device enabled the incubation and measurement of up to 24 samples in parallel. The chemicals paraquat-dichloride, alizarine and triclosan were chosen as representatives for the toxicant groups of non-PSII herbicides, polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals and personal care products (PPCPs), which are often detected in the aquatic environment. The I-PAM was used (i) to establish and validate the sensitivity of the test system to the three non-PSII inhibitors, (ii) to compare the test systems with standardized and established biotests for aquatic macrophytes, and (iii) to define necessary time scales in aquatic macrophyte testing. For validation of the fluorescence-based assay, the standard growth test with L. minor (ISO/DIS 20079) was performed in parallel for each chemical. Results The results revealed that fluorescence-based measurements with the I-PAM allow rapid and parallel analysis of large amounts of aquatic macrophyte samples. The I-PAM enabled the recording of concentration-effect-curves with L. minor samples on a 24-well plate with single measurements. Fluorescence-based concentration-effect-curves could be detected for all three chemicals after only 1 h of incubation. After 4–5 h incubation time, the maximum inhibition of fluorescence showed an 80–100% effect for the chemicals tested. The EC50 after 24 h incubation were estimated to be 0.06 mg/L, 0.84 mg/L and 1.69 mg/L for paraquatdichloride, alizarine and triclosan, respectively. Discussion The results obtained with the I-PAM after 24 h for the herbicide paraquat-dichloride and the polycyclic aromatic hydrocarbon alizarine were in good accordance with median effective concentrations (EC50s) obtained by the standardized growth test for L. minor after 7 d incubation (0.09 mg/L and 0.79 mg/L for paraquat-dichloride and alizarine, respectively). Those results were in accordance with literature findings for the two chemicals. In contrast, fluorescence-based EC50 of the antimicrobial agent triclosan proved to be two orders of magnitude greater when compared to the standard growth test with 7 d incubation time (0.026 mg/L) as well as with literature findings. Conclusion Typically, aquatic macrophyte testing is very time consuming and relies on laborious experimental set-ups. The I-PAM measuring device enabled fast effect screening for the three chemicals tested. While established test systems for aquatic macrophytes need incubation times of ≥ 7 d, the I-PAM can detect inhibitory effects much earlier (24 h), even if inhibition of chemicals is not specifically associated with PSII. Thus, the fluorescence-based bioassay with the I-PAM offers a promising approach for the miniaturization and high-throughput testing of chemicals with aquatic macrophytes. For the chemical triclosan, however, the short-term effect prediction with the I-PAM has been shown to be less sensitive than with long-term bioassays, which might be due to physicochemical substance properties such as lipophilicity. Recommendations and Perspectives The results of this study show that the I-PAM represents a promising tool for decreasing the incubation times of aquatic macrophyte toxicity testing to about 24 h as a supplement to existing test batteries. The applicability of this I-PAM bioassay on emergent and submerged aquatic macrophyte species should be investigated in further studies. Regarding considerations that physicochemical properties of the tested substances might play an important role in microplate bioassays, the I-PAM bioassay should either be accompanied by evaluating physicochemical properties modeled from structural information prior to an experimental investigation, or by intensified chemical analyses to identify and determine nominal concentrations of the toxicants tested. The chemicals paraquat-dichloride, alizarine and triclosan were chosen as representatives for the toxicant groups of non-PSII herbicides, PAHs and PPCPs which are often detected in the aquatic environment. Nevertheless, in order to ensure a routinely applicable measuring device, experiments with a broader range of toxicants and samples of surface and/or waste waters are necessary. ESS-Submission Editor: Dr. Markus Hecker (MHecker@Entrix.com)  相似文献   
410.
Background, Aims and Scope The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. Methods The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg−1 (37.5 kg ha−1) and 150 mg kg−1 (75 kg ha−1) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. Results On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha−1). Carabaograss had the lowest herbage mass production of 4.12 Mg ha−1 and 5.72 Mg ha−1 from soils added with 75 and 150 mg Pb kg−1, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg−1). This was followed by cogongrass (2.34 ± 0.52 mg kg−1) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg−1. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg−1) to the soil. Discussion Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. Conclusions The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. Recommendations and Perspectives High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks. ESS-Submission Editor: Dr. Willie Peijnenburg (wjgm.peijnenburg@rivm.nl)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号