首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1688篇
  免费   16篇
  国内免费   73篇
安全科学   76篇
废物处理   186篇
环保管理   183篇
综合类   160篇
基础理论   277篇
环境理论   2篇
污染及防治   651篇
评价与监测   163篇
社会与环境   63篇
灾害及防治   16篇
  2023年   20篇
  2022年   37篇
  2021年   36篇
  2020年   15篇
  2019年   29篇
  2018年   44篇
  2017年   58篇
  2016年   82篇
  2015年   43篇
  2014年   71篇
  2013年   140篇
  2012年   105篇
  2011年   119篇
  2010年   96篇
  2009年   109篇
  2008年   122篇
  2007年   108篇
  2006年   100篇
  2005年   87篇
  2004年   83篇
  2003年   57篇
  2002年   62篇
  2001年   47篇
  2000年   21篇
  1999年   12篇
  1998年   9篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1965年   1篇
排序方式: 共有1777条查询结果,搜索用时 12 毫秒
421.
Abstract: The watershed scale Soil and Water Assessment Tool (SWAT) model divides watersheds into smaller subwatersheds for simulation of rainfall‐runoff and sediment loading at the field level and routing through stream networks. Typically, the SWAT model first needs to be calibrated and validated for accurate estimation through adjustment of sensitive input parameters (i.e., Curve Number values, USLE P, slope and slope‐length, and so on). However, in some instances, SWAT‐simulated results are greatly affected by the watershed delineation and Digital Elevation Models (DEM) cell size. In this study, the SWAT ArcView GIS Patch II was developed for steep sloping watersheds, and its performance was evaluated for various threshold values and DEM cell size scenarios when delineating subwatersheds using the SWAT model. The SWAT ArcView GIS Patch II was developed using the ArcView GIS Avenue program and Spatial Analyst libraries. The SWAT ArcView GIS Patch II improves upon the SWAT ArcView GIS Patch I because it reflects the topographic factor in calculating the field slope‐length of Hydrologic Response Units in the SWAT model. The simulated sediment value for 321 subwatersheds (watershed delineation threshold value of 25 ha) is greater than that for 43 subwatersheds (watershed delineation threshold value of 200 ha) by 201% without applying the SWAT ArcView GIS Patch II. However, when the SWAT ArcView GIS Patch II was applied, the difference in simulated sediment yield decreases for the same scenario (i.e., difference in simulated sediment with 321 subwatersheds and 43 subwatersheds) was 12%. The simulated sediment value for DEM cell size of 50 m is greater than that for DEM cell size of 10 m by 19.8% without the SWAT ArcView GIS Patch II. However, the difference becomes smaller (3.4% difference) between 50 and 10 m with the SWAT ArcView GIS Patch II for the DEM scenarios. As shown in this study, the SWAT ArcView GIS Patch II can reduce differences in simulated sediment values for various watershed delineation and DEM cell size scenarios. Without the SWAT ArcView GIS Patch II, variations in the SWAT‐simulated results using various watershed delineation and DEM cell size scenarios could be greater than those from input parameter calibration. Thus, the results obtained in this study show that the SWAT ArcView GIS Patch II should be used when simulating hydrology and sediment yield for steep sloping watersheds (especially if average slope of the subwatershed is >25%) for more accurate simulation of hydrology and sediment using the SWAT model. The SWAT ArcView GIS Patch II is available at http://www.EnvSys.co.kr/~swat for free download.  相似文献   
422.
Ambient PM2.5 (particulate matter less than 2.5 microm in aerodynamic diameter) in the northwestern United States and Alaska is dominated by carbonaceous compounds associated with wood burning and transportation sources. PM2.5 source characterization studies analyzing recent PM2.5 speciation data have not been previously reported for these areas. In this study, ambient PM2.5 speciation samples collected at two monitoring sites located in the northwestern area, Olympic Peninsula, WA, and Portland, OR, and one monitoring site located in Anchorage, AK, were characterized through source apportionments. Gasoline vehicle, secondary sulfate, and wood smoke were the largest sources of PM2.5 collected at the Anchorage, Olympic, and Portland monitoring sites, respectively. Secondary sulfates showed an April peak at Anchorage and a November peak at Portland that are likely related to the increased photochemical reaction and long-range transport in Anchorage and meteorological stagnation in Portland. Secondary nitrate at the Olympic site showed a weak summer high peak that could be caused by seasonal tourism in the national park. Backward trajectories suggested that the elevated aged sea salt concentrations at the Portland monitoring site could be regional transport of sea salt that passed through other contaminated air sheds along the coast. Oil combustion emissions that might originate from ships and ferries were observed at the Olympic monitoring site.  相似文献   
423.
Co-composting biowastes such as manures and biosolids can be used to stabilize carbon (C) without impacting the quality of these biowastes. This study investigated the effect of co-composting biowastes with alkaline materials on C stabilization and monitored the fertilization and revegetation values of these co-composts. The stabilization of C in biowastes (poultry manure and biosolids) was examined by their composting in the presence of various alkaline amendments (lime, fluidized bed boiler ash, flue gas desulphurization gypsum, and red mud) for 6 months in a controlled environment. The effects of co-composting on the biowastes’ properties were assessed for different physical C fractions, microbial biomass C, priming effect, potentially mineralizable nitrogen, bioavailable phosphorus, and revegetation of an urban landfill soil. Co-composting biowastes with alkaline materials increased C stabilization, attributed to interaction with alkaline materials, thereby protecting it from microbial decomposition. The co-composted biowastes also increased the fertility of the landfill soil, thereby enhancing its revegetation potential. Stabilization of biowastes using alkaline materials through co-composting maintains their fertilization value in terms of improving plant growth. The co-composted biowastes also contribute to long-term soil C sequestration and reduction of bioavailability of heavy metals.  相似文献   
424.
For males, courting and foraging are often behavioral alternatives, which take time and consume energy. When males have a possibility of mating with receptive females, there may be a behavioral trade-off between courtship and feeding; the outcome of which may be affected by male physiological condition and food availability. Although many mathematical models and empirical studies suggest that the expression of male courtship signals are condition-dependent, decisions about courtship and mating strategies in relation to food availability have not attracted much attention. In this study, we tested whether daily changes in food availability affect males’ decisions about whether to court. We conducted experiments with the fiddler crab Uca lactea by providing males with additional food every other day. In food-supplemented enclosures, males did not increase courtship activity on the days when food was supplemented. However, they built more courtship structures (semidomes) and waved more on the days when they were not given additional food. Male size had a strong influence on the number of days the males courted. We also tested whether the frequency of surface mating, as an alternative reproductive tactic, decreased when food was supplemented. Contrary to our expectation, the number of males that exhibited the surface-mating tactic increased when food was supplemented whereas the number of mate-searching females did not change. Our findings in this field study suggest that reproductive decisions by male fiddler crabs are affected by fluctuating food availability and present body condition, and the alternative mating tactic of this species may be more frequently used by males under good condition.  相似文献   
425.
The defining feature of the life cycle in monogonont rotifers such as Brachionus plicatilis (Muller) is alternation of asexual and sexual reproduction (mixis). Why sex is maintained in such life cycles is an important unsolved evolutionary question and one especially amenable to experimental analysis. Mixis is induced by a chemical signal produced by the rotifers which accumulates to threshold levels at high population densities. The chemical features of this signal were characterized using size exclusion, enzymatic degradation, protease protection assays, selective binding to anion ion exchange and C3 reversed phase HPLC columns, and the sequence of 17 N-terminal amino acids. These studies were carried out over two years beginning in 2003 using B. plicatilis Russian strain. When rotifer-conditioned medium was treated with proteinase K, its mixis-inducing ability was reduced by 70%. Proteinase K was added to medium auto-conditioned by 1 female ml−1 where typically 17% of daughters became mictic and mixis was reduced to 1%. A cocktail of protease inhibitors added to conditioned medium significantly reduced degradation of the mixis signal by natural proteases. Conditioned medium subjected to ultrafiltration retained mixis-inducing activity in the >10 kDa fraction, but the <10 kDa fraction had no significant activity. The putative mixis signal bound to an anion exchange column, eluting off at 0.72 M NaCl. These fractions were further separated on a C3 reversed phase HPLC column and mixis-inducing activity was associated with a 39 kDa protein. Seventeen amino acids from the N-terminus have strong similarity to a steroidogenesis-inducing protein isolated from human ovarian follicular fluid. The 39 kDa protein is an excellent candidate for the rotifer mixis induction signal.  相似文献   
426.
A photochemical smog model system, the Variable-Grid Urban Airshed Model/Systems Applications International Mesoscale Model (UAM-V/SAIMM), was used to investigate photochemical pollution in the Bangkok Metropolitan Region (BMR). The model system was first applied to simulate a historical photochemical smog episode of two days (January 13-14, 1997) using the 1997 anthropogenic emission database available at the Pollution Control Department and an estimated biogenic emission. The output 1-hr ozone (O3) for BMR, however, did not meet the U.S. Environmental Protection Agency suggested performance criteria. The simulated minimum and maximum O3 values in the domain were much higher than the observations. Multiple model runs with different precursor emission reduction scenarios showed that the best model performance with the simulated 1-hr O3 meeting all the criteria was obtained when the volatile organic compound (VOC) and oxides of nitrogen (NOx) emission from mobile source reduced by 50% and carbon monoxide by 20% from the original database. Various combinations of anthropogenic and biogenic emissions in Bangkok and surrounding provinces were simulated to assess the contribution of different sources to O3 pollution in the city. O3 formation in Bangkok was found to be more VOC-sensitive than NOx-sensitive. To attain the Thailand ambient air quality standard for 1-hr O3 of 100 ppb, VOC emission in BMR should be reduced by 50-60%. Management strategies considered in the scenario study consist of Stage I, Stage II vapor control, replacement of two-stroke by four-stroke motorcycles, 100% compressed natural gas bus, 100% natural gas-fired power plants, and replacement of methyltertiarybutylether by ethanol as an additive for gasoline.  相似文献   
427.
Choi KJ  Kim SG  Kim CW  Kim SH 《Chemosphere》2005,58(11):1535-1545
Removal performances of endocrine disrupting chemicals (EDC) such as amitrol, nonylphenol, and bisphenol-A were evaluated in this study using granular activated carbon (GAC) adsorption. This study found that GAC adsorption was effective in removal of EDCs with high Kow value. Nonylphenol and bisphenol-A were effectively adsorbed onto all carbons (including the used carbons) tested in this study. As indicated by Kow value, nonylphenol was more effectively adsorbed than bisphenol-A. The coal-based carbon was found more effective than other carbons in the adsorption of nonylphenol and bisphenol-A due to its larger pore volume. The adsorption capacity reduced with the operation year, and the extent of the reduction was different depending upon the carbon type and the operation year. Amitrol was effectively removed by biological degradation, but was poorly adsorbed. Since the microbes residing at the used carbons already accustomed to amitrol, the used carbons removed amitrol better than the virgin carbons. Although the coal-based carbon showed the best removal performance of amitrol, GAC adsorption could not be recommended for amitrol removal because considerable portion of incoming amitrol (9–87%) passed through GAC adsorption column. According to this study, pore volume mainly influenced the adsorption capacity, but the surface charge was also important due to electrical interaction. The adsorption parameters for nonylphenol and bisphenol-A provided by this study could be valuable when GAC adsorption was considered to handle an accidental spill of nonylphenol and bisphenol-A.  相似文献   
428.
The photochemical oxidation and dispersion of reduced sulfur compounds (RSCs: H2S, CH3SH, DMS, CS2, and DMDS) emitted from anthropogenic (A) and natural (N) sources were evaluated based on a numerical modeling approach. The anthropogenic emission concentrations of RSCs were measured from several sampling sites at the Donghae landfill (D-LF) (i.e., source type A) in South Korea during a series of field campaigns (May through December 2004). The emissions of natural RSCs in a coastal study area near the D-LF (i.e., source type N) were estimated from sea surface DMS concentrations and transfer velocity during the same study period. These emission data were then used as input to the CALPUFF dispersion model, revised with 34 chemical reactions for RSCs. A significant fraction of sulfur dioxide (SO2) was produced photochemically during the summer (about 34% of total SO2 concentrations) followed by fall (21%), spring (15%), and winter (5%). Photochemical production of SO2 was dominated by H2S (about 55% of total contributions) and DMS (24%). The largest impact of RSCs from source type A on SO2 concentrations occurred around the D-LF during summer. The total SO2 concentrations produced from source type N around the D-LF during the summer (a mean SO2 concentration of 7.4 ppbv) were significantly higher than those (≤0.3 ppbv) during the other seasons. This may be because of the high RSC and SO2 emissions and their photochemistry along with the wind convergence.  相似文献   
429.
During the June 1996 eruption of Mt Ruapehu, New Zealand, traces of fine particulate volcanic ash were observed in or near the cities of Hamilton and Auckland, 166–282 km from the volcano. Although no health impacts in these cities were attributed to the eruption, hospital records at both cities for the following month show the highest rates of respiratory mortality for the 1990s. Alternative explanations for this increase in respiratory mortality were investigated, including urban air pollution, adverse weather conditions and influenza. Comparable records from Wellington city, assumed to be outside the zone of ash dispersal, were used as a ‘control’. Our results suggest that at Hamilton, where non-volcanic factors can largely be eliminated as making a significant contribution, diffuse volcanic ashfall may have been an important factor in respiratory mortality during the weeks following the eruption. At Auckland, further away from the volcano but with a much larger population than Hamilton, a case for a weaker volcanic contribution can be made, but is more equivocal because of coincidentally high urban air pollution and cold, stable weather.These findings support the concept that diffuse fine volcanic ash poses a risk to respiratory health at greater distances from an eruption than is currently perceived. This is because the finest ‘respirable’ fraction of erupted material with potentially hazardous physico-chemical properties is likely to be ejected highest into the atmosphere and dispersed the greatest distance. If significant amounts reach large cities, then large numbers of individuals may be at risk, especially those already suffering poor respiratory health. This work has important implications for environmental health and hazard management in New Zealand and in other regions that may be susceptible to a similar volcanic threat.  相似文献   
430.

Background, aim, and scope  

Hexane, a representative VOC, is used as a solvent for extraction and as an ingredient in gasoline. The degradation of hexane by bacteria is relatively slow due to its low solubility. Moreover, the biodegradation pathway of hexane under aerobic conditions remains to be investigated; therefore, a study relating to aerobic biodegradation mechanisms is required. Consequently, in this study, an effective hexane degrader was isolated and the biodegradation pathway examined for the first time. In addition, the degradation characteristics of a variety of recalcitrant hydrocarbons were qualitatively and quantitatively investigated using the isolate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号