首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   1篇
  国内免费   3篇
安全科学   2篇
废物处理   4篇
环保管理   34篇
综合类   12篇
基础理论   36篇
污染及防治   65篇
评价与监测   15篇
社会与环境   5篇
灾害及防治   2篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   11篇
  2012年   5篇
  2011年   20篇
  2010年   15篇
  2009年   8篇
  2008年   17篇
  2007年   13篇
  2006年   12篇
  2005年   8篇
  2004年   7篇
  2003年   9篇
  2002年   9篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有175条查询结果,搜索用时 78 毫秒
61.
Sedimentation of the Illinois River in central Illinois has greatly diminished the utility and ecological value of the Peoria Lakes reach of the river. Consequently, a large dredging project has been proposed to improve its wildlife habitat and recreation potential, but disposal of the dredged sediment presents a challenge. Land placement is an attractive option. Previous work in Illinois has demonstrated that sediments are potentially capable of supporting agronomic crops due to their high natural fertility and water holding capacity. However, Illinois River sediments have elevated levels of heavy metals, which may be important if they are used as garden or agricultural soil. A greenhouse experiment was conducted to determine if these sediments could serve as a plant growth medium. A secondary objective was to determine if plants grown on sediments accumulated significant heavy metal concentrations. Our results indicated that lettuce (Lactuca sativa L.), barley (Hordeum vulgare L.), radish (Raphanus sativus L.), tomato (Lycopersicon lycopersicum L.), and snap bean (Phaseolus vulagaris L. var. humillis) grown in sediment and a reference topsoil did not show significant or consistent differences in germination or yields. In addition, there was not a consistent statistically significant difference in metal content among tomatoes grown in sediments, topsoil, or grown locally in gardens. In the other plants grown on sediments, while Cd and Cu in all cases and As in lettuce and snap bean were elevated, levels were below those considered excessive. Results indicate that properly managed, these relatively uncontaminated calcareous sediments can make productive soils and that metal uptake of plants grown in these sediments is generally not a concern.  相似文献   
62.
Why particles?     
Smith KR  Jantunen M 《Chemosphere》2002,49(9):867-871
  相似文献   
63.
Simulations provide an opportunity to examine how single or multiple perturbations may impact a specific species. The objectives of this study were to identify thresholds at which changes in stream peak flow, stream base flow, and/or chytrid fungus presence alter long-term Rana chiricahuensis populations. We used scenarios with varying peak flow mortality rates, base flow mortality rates, and chytrid fungus mortality rates. Sensitivity analysis was also conducted. Over 50 years, populations in six scenarios increased and 13 scenarios decreased. Eight scenarios resulting with fewer than 100 individuals included stochastic effects for at least two of three perturbations and the remaining scenarios included chronic effects of 30% or higher. Scenarios with population increases had either no chytrid fungus effect or chronic effects from perturbations totaling less than 30%. In the absence of chytrid fungus, populations increased and became stable. At a 10% annual death rate caused by chytrid fungus, the R. chiricahuensis population decreased 46.8%. At a 20% death rate, the population decreased 98.6%. Model scenarios were sensitive to peak flow death rates. As peak flow mortality increased to 10 and 20%, extinction rates increased to 91.7 and 99.9%, respectively. With model parameters and the no base flow mortality, R. chiricahuensis populations declined by 92% with a 3.2% extinction rate at 50 years. Models with base flow mortality rates of 10 and 20% resulted in population extinction rates of 48.7 and 96.1%, respectively. Scenario analysis of perturbations on a hypothetical R. chiricahuensis population provided a framework in which to view combined effects on a species. Analysis supports supposition that chytrid fungus is the proximate cause of many amphibian declines, but the added effect of base flow and peak flow has the potential to hasten declines.  相似文献   
64.
65.
In a previous article, Beschta et al. (Environ Manag 51(2):474–491, 2013) argue that grazing by large ungulates (both native and domestic) should be eliminated or greatly reduced on western public lands to reduce potential climate change impacts. The authors did not present a balanced synthesis of the scientific literature, and their publication is more of an opinion article. Their conclusions do not reflect the complexities associated with herbivore grazing. Because grazing is a complex ecological process, synthesis of the scientific literature can be a challenge. Legacy effects of uncontrolled grazing during the homestead era further complicate analysis of current grazing impacts. Interactions of climate change and grazing will depend on the specific situation. For example, increasing atmospheric CO2 and temperatures may increase accumulation of fine fuels (primarily grasses) and thus increase wildfire risk. Prescribed grazing by livestock is one of the few management tools available for reducing fine fuel accumulation. While there are certainly points on the landscape where herbivore impacts can be identified, there are also vast grazed areas where impacts are minimal. Broad scale reduction of domestic and wild herbivores to help native plant communities cope with climate change will be unnecessary because over the past 20–50 years land managers have actively sought to bring populations of native and domestic herbivores in balance with the potential of vegetation and soils. To cope with a changing climate, land managers will need access to all available vegetation management tools, including grazing.  相似文献   
66.
Immunosenescence, the aging of the immune system, is well documented in humans and laboratory models and is known to increase infection risk, morbidity, and mortality among the old. Immunosenescence patterns have recently been unveiled in various free-living populations, but their consequences in the wild have not been explored. We investigated the consequences of immunosenescence in free-living Tree Swallows Tachycineta bicolor through a field experiment simulating a bacterial infection (challenge with lipopolysaccharide, LPS) in females of different ages during the nestling rearing period. We assessed behavioral and physiological responses of females, as well as growth and quality of their offspring, to determine the costs associated with the simulated infection. Results of the experiment differed between the two years of study. In the first year, old females challenged with LPS lost more body mass and reduced their nest visitation rates more, and their offspring tended to grow slower compared to similarly challenged younger females. In contrast, in the second year, old females did not appear to suffer larger costs than younger ones. Interestingly, immunosenescence was only detected during the first year of the study, suggesting that it is the dysregulated immune function characteristic of immunosenescent individuals rather than age per se that can lead to higher costs of immune defense in old individuals. These results provide the first evidence of costs of immunosenescence in free-living animals and support the hypothesis that old, immunosenescent individuals pay higher costs than younger ones when faced with a challenge to their immune system. Our results also suggest that these costs are mediated by an exaggerated sickness behavior, as seen in laboratory models, and can be modulated by ecological factors such as weather conditions and food availability.  相似文献   
67.
Phragmites australis Trin., and/or aggressive species, Typha spp. Tidally influenced wetlands that have subtidal perimeter ditches have significantly less (P < 0.05) P. australis in the wetland interior than those without perimeter ditches. Fractured regression analyses show that 6 years after construction, P. australis invasion can be extensive. Linear regression analysis suggests that, if conditions remain favorable for P. australis colonization, constructed wetlands could be overrun in 40 years.  相似文献   
68.
While several empirical and theoretical studies have clearly shown the negative effects of climate or landscape changes on population and species survival only few of them addressed combined and correlated consequences of these key environmental drivers. This also includes positive landscape changes such as active habitat management and restoration to buffer the negative effects of deteriorating climatic conditions. In this study, we apply a conceptual spatial modelling approach based on functional types to explore the effects of both positive and negative correlations between changes in habitat and climate conditions on the survival of spatially structured populations. We test the effect of different climate and landscape change scenarios on four different functional types that represent a broad spectrum of species characterised by their landscape level carrying capacity, the local population turnover rates at the patch level (K-strategies vs. r-strategies) and dispersal characterstics. As expected, simulation results show that correlated landscape and climatic changes can accelerate (in case of habitat loss or degradation) or slow down (in case of habitat gain or improvement) regional species extinction. However, the strength of the combined changes depends on local turnover at the patch level, the overall landscape capacity of the species, and its specific dispersal characteristics. Under all scenarios of correlated changes in habitat and climate conditions we found the highest sensitivity for functional types representing species with a low landscape capacity but a high population growth rate and a strong density regulation causing a high turnover at the local patch level.The relative importance of habitat loss or habitat degradation, in combination with climate deterioration, differed among the functional types. However, an increase in regional capacity revealed a similar response pattern: For all types, habitat improvement led to higher survival times than habitat gain, i.e. the establishment of new habitat patches. This suggests that improving local habitat quality at a regional scale is a more promising conservation strategy under climate change than implementing new habitat patches. This conceptual modelling study provides a general framework to better understand and support the management of populations prone to complex environmental changes.  相似文献   
69.
Of the many signals used by honey bees during the process of swarming, two of them??the stop signal and the worker piping signal??are not easily distinguished for both are mechano-acoustic signals produced by scout bees who press their bodies against other bees while vibrating their wing muscles. To clarify the acoustic differences between these two signals, we recorded both signals from the same swarm and at the same time, and compared them in terms of signal duration, fundamental frequency, and frequency modulation. Stop signals and worker piping signals differ in all three variables: duration, 174?±?64 vs. 602?±?377?ms; fundamental frequency, 407 vs. 451?Hz; and frequency modulation, absent vs. present. While it remains unclear which differences the bees use to distinguish the two signals, it is clear that they do so for the signals have opposite effects. Stop signals cause inhibition of actively dancing scout bees whereas piping signals cause excitation of quietly resting non-scout bees.  相似文献   
70.
Fish Migration, Dams, and Loss of Ecosystem Services in the Mekong Basin   总被引:1,自引:0,他引:1  
The past decade has seen increased international recognition of the importance of the services provided by natural ecosystems. It is unclear however whether such international awareness will lead to improved environmental management in many regions. We explore this issue by examining the specific case of fish migration and dams on the Mekong river. We determine that dams on the Mekong mainstem and major tributaries will have a major impact on the basin’s fisheries and the people who depend upon them for food and income. We find no evidence that current moves towards dam construction will stop, and consider two scenarios for the future of the fisheries and other ecosystems of the basin. We conclude that major investment is required in innovative technology to reduce the loss of ecosystem services, and alternative livelihood strategies to cope with the losses that do occur.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号