首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   1篇
  国内免费   3篇
安全科学   2篇
废物处理   4篇
环保管理   34篇
综合类   12篇
基础理论   36篇
污染及防治   65篇
评价与监测   15篇
社会与环境   5篇
灾害及防治   2篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   11篇
  2012年   5篇
  2011年   20篇
  2010年   15篇
  2009年   8篇
  2008年   17篇
  2007年   13篇
  2006年   12篇
  2005年   8篇
  2004年   7篇
  2003年   9篇
  2002年   9篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
71.
In a previous article, Beschta et al. (Environ Manag 51(2):474–491, 2013) argue that grazing by large ungulates (both native and domestic) should be eliminated or greatly reduced on western public lands to reduce potential climate change impacts. The authors did not present a balanced synthesis of the scientific literature, and their publication is more of an opinion article. Their conclusions do not reflect the complexities associated with herbivore grazing. Because grazing is a complex ecological process, synthesis of the scientific literature can be a challenge. Legacy effects of uncontrolled grazing during the homestead era further complicate analysis of current grazing impacts. Interactions of climate change and grazing will depend on the specific situation. For example, increasing atmospheric CO2 and temperatures may increase accumulation of fine fuels (primarily grasses) and thus increase wildfire risk. Prescribed grazing by livestock is one of the few management tools available for reducing fine fuel accumulation. While there are certainly points on the landscape where herbivore impacts can be identified, there are also vast grazed areas where impacts are minimal. Broad scale reduction of domestic and wild herbivores to help native plant communities cope with climate change will be unnecessary because over the past 20–50 years land managers have actively sought to bring populations of native and domestic herbivores in balance with the potential of vegetation and soils. To cope with a changing climate, land managers will need access to all available vegetation management tools, including grazing.  相似文献   
72.
Immunosenescence, the aging of the immune system, is well documented in humans and laboratory models and is known to increase infection risk, morbidity, and mortality among the old. Immunosenescence patterns have recently been unveiled in various free-living populations, but their consequences in the wild have not been explored. We investigated the consequences of immunosenescence in free-living Tree Swallows Tachycineta bicolor through a field experiment simulating a bacterial infection (challenge with lipopolysaccharide, LPS) in females of different ages during the nestling rearing period. We assessed behavioral and physiological responses of females, as well as growth and quality of their offspring, to determine the costs associated with the simulated infection. Results of the experiment differed between the two years of study. In the first year, old females challenged with LPS lost more body mass and reduced their nest visitation rates more, and their offspring tended to grow slower compared to similarly challenged younger females. In contrast, in the second year, old females did not appear to suffer larger costs than younger ones. Interestingly, immunosenescence was only detected during the first year of the study, suggesting that it is the dysregulated immune function characteristic of immunosenescent individuals rather than age per se that can lead to higher costs of immune defense in old individuals. These results provide the first evidence of costs of immunosenescence in free-living animals and support the hypothesis that old, immunosenescent individuals pay higher costs than younger ones when faced with a challenge to their immune system. Our results also suggest that these costs are mediated by an exaggerated sickness behavior, as seen in laboratory models, and can be modulated by ecological factors such as weather conditions and food availability.  相似文献   
73.
Phragmites australis Trin., and/or aggressive species, Typha spp. Tidally influenced wetlands that have subtidal perimeter ditches have significantly less (P < 0.05) P. australis in the wetland interior than those without perimeter ditches. Fractured regression analyses show that 6 years after construction, P. australis invasion can be extensive. Linear regression analysis suggests that, if conditions remain favorable for P. australis colonization, constructed wetlands could be overrun in 40 years.  相似文献   
74.
While several empirical and theoretical studies have clearly shown the negative effects of climate or landscape changes on population and species survival only few of them addressed combined and correlated consequences of these key environmental drivers. This also includes positive landscape changes such as active habitat management and restoration to buffer the negative effects of deteriorating climatic conditions. In this study, we apply a conceptual spatial modelling approach based on functional types to explore the effects of both positive and negative correlations between changes in habitat and climate conditions on the survival of spatially structured populations. We test the effect of different climate and landscape change scenarios on four different functional types that represent a broad spectrum of species characterised by their landscape level carrying capacity, the local population turnover rates at the patch level (K-strategies vs. r-strategies) and dispersal characterstics. As expected, simulation results show that correlated landscape and climatic changes can accelerate (in case of habitat loss or degradation) or slow down (in case of habitat gain or improvement) regional species extinction. However, the strength of the combined changes depends on local turnover at the patch level, the overall landscape capacity of the species, and its specific dispersal characteristics. Under all scenarios of correlated changes in habitat and climate conditions we found the highest sensitivity for functional types representing species with a low landscape capacity but a high population growth rate and a strong density regulation causing a high turnover at the local patch level.The relative importance of habitat loss or habitat degradation, in combination with climate deterioration, differed among the functional types. However, an increase in regional capacity revealed a similar response pattern: For all types, habitat improvement led to higher survival times than habitat gain, i.e. the establishment of new habitat patches. This suggests that improving local habitat quality at a regional scale is a more promising conservation strategy under climate change than implementing new habitat patches. This conceptual modelling study provides a general framework to better understand and support the management of populations prone to complex environmental changes.  相似文献   
75.
Of the many signals used by honey bees during the process of swarming, two of them??the stop signal and the worker piping signal??are not easily distinguished for both are mechano-acoustic signals produced by scout bees who press their bodies against other bees while vibrating their wing muscles. To clarify the acoustic differences between these two signals, we recorded both signals from the same swarm and at the same time, and compared them in terms of signal duration, fundamental frequency, and frequency modulation. Stop signals and worker piping signals differ in all three variables: duration, 174?±?64 vs. 602?±?377?ms; fundamental frequency, 407 vs. 451?Hz; and frequency modulation, absent vs. present. While it remains unclear which differences the bees use to distinguish the two signals, it is clear that they do so for the signals have opposite effects. Stop signals cause inhibition of actively dancing scout bees whereas piping signals cause excitation of quietly resting non-scout bees.  相似文献   
76.
Key attributes of the source zone and the expanding dissolved plume at a trichloroethene (TCE) site in Australia were evaluated using trends in groundwater monitoring data along with data from on-line volatile organic compound (VOC) samplers and passive flux meters (PFMs) deployed in selected wells. These data indicate that: (1) residual TCE source mass in the saturated zone, estimated using two innovative techniques, is small ( 10 kg), which is also reflected in small source mass discharge ( 3 g/day); (2) the plume is disconnecting, based on TCE concentration contours and TCE fluxes in wells along a longitudinal transect; (3) there is minimal biodegradation, based on TCE mass discharge of  6 g/day at a plume control plane  175 m from source, which is also consistent with aerobic geochemical conditions observed in the plume; and (4) residual TCE in the vadose zone provides episodic inputs of TCE mass to the plume during infiltration/recharge events. TCE flux data also suggest that the small residual TCE source mass is present in the low-permeability zones, thus making source treatment difficult. Our analysis, based on a synthesis of the archived data and new data, suggests that source treatment is unwarranted, and that containment of the large TCE plume ( 1.2 km long,  0.3 km wide; 17 m deep;  2000–2500 kg TCE mass) or institutional controls, along with a long-term flux monitoring program, might be necessary. The flux-based site management approach outlined in this paper provides a novel way of looking beyond the complexities of groundwater contamination in heterogeneous domains, to make intelligent and informed site decisions based on strategic measurement of the appropriate metrics.  相似文献   
77.
Poplar plantation is the most dominant broadleaf forest type in northern China. Since the mid-1990s plantation was intensified to combat desertification along China's northwestern border, i.e., within Inner Mongolia (IM). This evoked much concern regarding the ecological and environmental effects on areas that naturally grow grass or shrub vegetation. To highlight potential consequences of large-scale poplar plantations on the water budget within semiarid IM, we compared the growing season water balance (evapotranspiration (ET) and precipitation (PPT)) of a 3-yr old poplar plantation (Kp3) and a natural shrubland (Ks) in the Kubuqi Desert in western IM, and a 6-yr old poplar plantation (Bp6) growing under sub-humid climate near Beijing. The results showed that, despite 33% lower PPT at Kp3, ET was 2% higher at Kp3 (228 mm) as compared with Ks (223 mm) in May–September 2006. The difference derived mainly from higher ET at the plantation during drier periods of the growing season, which also indicated that the poplars must have partly transpired groundwater. Estimated growing season ET at Bp6 was about 550 mm and more than 100% higher than at Kp3. It is estimated that increases in leaf area index and net radiation at Kp3 provide future potential for the poplars in Kubuqi to exceed the present ET and ET of the natural shrubland by 100–200%. These increases in ET are only possible through the permanent use of groundwater either directly by the trees or through increased irrigation. This may significantly change the water balance in the area (e.g., high ET at the cost of a reduction in the water table), which renders large-scale plantations a questionable tool in sustainable arid-land management.  相似文献   
78.
Mowing is commonly implemented to Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh (Wyoming big sagebrush) plant communities to improve wildlife habitat, increase forage production for livestock, and create fuel breaks for fire suppression. However, information detailing the influence of mowing on winter habitat for wildlife is lacking. This information is crucial because many wildlife species depended on A. tridentata spp. wyomingensis plant communities for winter habitat and consume significant quantities of Artemisia during this time. Furthermore, information is generally limited describing the recovery of A. tridentata spp. wyomingensis to mowing and the impacts of mowing on stand structure. Stand characteristics and Artemisia leaf tissue crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF) concentrations were measured in midwinter on 0-, 2-, 4-, and 6-year-old fall-applied mechanical (mowed at 20 cm height) treatments and compared to adjacent untreated (control) areas. Mowing compared to the control decreased Artemisia cover, density, canopy volume, canopy elliptical area, and height (P < 0.05), but all characteristics were recovering (P < 0.05). Mowing A. tridentata spp. wyomingensis plant communities slightly increases the nutritional quality of Artemisia leaves (P < 0.05), but it simultaneously results in up to 20 years of decrease in Artemisia structural characteristics. Because of the large reduction in A. tridentata spp. wyomingensis for potentially 20 years following mowing, mowing should not be applied in Artemisia facultative and obligate wildlife winter habitat. Considering the decline in A. tridentata spp. wyomingensis-dominated landscapes, we caution against mowing these communities.  相似文献   
79.
Interactions between earthworms and arsenic in the soil environment: a review   总被引:10,自引:0,他引:10  
Chemical pollution of the environment has become a major source of concern. In particular, many studies have investigated the impact of pollution on biota in the environment. Studies on metalliferous contaminated mine spoil wastes have shown that some soil organisms have the capability to become resistant to metal/metalloid toxicity. Earthworms are known to inhabit arsenic-rich metalliferous soils and, due to their intimate contact with the soil, in both the solid and aqueous phases, are likely to accumulate contaminants present in mine spoil. Earthworms that inhabit metalliferous contaminated soils must have developed mechanisms of resistance to the toxins found in these soils. The mechanisms of resistance are not fully understood; they may involve physiological adaptation (acclimation) or be genetic. This review discusses the relationships between earthworms and arsenic-rich mine spoil wastes, looking critically at resistance and possible mechanisms of resistance, in relation to soil edaphic factors and possible trophic transfer routes.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号