首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   3篇
  国内免费   5篇
安全科学   6篇
废物处理   25篇
环保管理   38篇
综合类   26篇
基础理论   57篇
污染及防治   105篇
评价与监测   52篇
社会与环境   17篇
  2023年   9篇
  2022年   15篇
  2021年   22篇
  2020年   5篇
  2019年   8篇
  2018年   10篇
  2017年   7篇
  2016年   9篇
  2015年   7篇
  2014年   17篇
  2013年   40篇
  2012年   15篇
  2011年   21篇
  2010年   11篇
  2009年   17篇
  2008年   19篇
  2007年   10篇
  2006年   10篇
  2005年   12篇
  2004年   9篇
  2003年   11篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1971年   3篇
  1966年   3篇
  1964年   2篇
  1963年   1篇
  1962年   1篇
  1957年   1篇
  1954年   1篇
排序方式: 共有326条查询结果,搜索用时 31 毫秒
111.
The rapid industrialization has induced the entry of organic and inorganic contaminants into the environment at a rate greater than environmental cleaning. As a consequence, pollutants have accumulated in environmental media, thus posing health risk for living organisms. Here, we present surface treatment strategies that modify physicochemical properties of activated carbon fibers for environmental remediation. In particular, we review metals, metal oxides and various advanced materials used for modifying activated carbon fibers. We discuss the utilization of modified activated carbon fibers for adsorption of organic pollutants and inorganic pollutants, and for the degradation of organic pollutants by photocatalysis, electrocatalysis, Fenton process and dielectric barrier discharge. We also discuss air pollutant removal, capacitive deionization, removal of inorganic ions and microbial decontamination by modified activated carbon fibers.  相似文献   
112.
The extent of accumulation of some heavy metals in root and aerial plant parts, total chlorophyll, protein and yield of C. cajan exposed to mine spoil were investigated. Chlorophyll and protein level on the control site increased from the basal level to 1.49 fold and 1.92 fold respectively on 150 d and attained a plateau within 210 d. The maximum decline in leaf protein and yield in selected mine spoil has been observed 37% (18.46 mg g(-1) fresh wt) and 76% at 150 d and maintained a slight decline when duration was extended up to 210 d as compared to control. Whereas in case of photo pigment content (Chlorophyll a and b) the maximum reduction was almost 42% (0.786 mg g(-1) fresh wt) during 210 d from its basal level. Plant tissues have accumulated maximum level of selected cations in control and mine spoil in the order (Fe > Mn > Zn > Cu > Pb > Ni > Cr > Cd). Metal accumulation in different plant parts was observed in the decreasing order roots > shoots > leaves > seeds. Invariably high accumulation of such cations in roots overshoots indicated accumulation, retention or restricted translocation from root to shoot. The metal share of seed varied from 1.3-39.5 fold as compared to their respective controls but their amount was quite below the toxic range. Thus the present work explores the metal accumulation in the plant tissues.  相似文献   
113.
• Eco-friendly IONPs were synthesized through solvothermal method. • IONPs show very high removal efficiency for CeO2 NPs i.e. 688 mg/g. • Removal was >90% in all synthetic and real water samples. • >80% recovery of CeO2 NPs through sonication confirms reusability of IONPs. Increasing applications of metal oxide nanoparticles and their release in the natural environment is a serious concern due to their toxic nature. Therefore, it is essential to have eco-friendly solutions for the remediation of toxic metal oxides in an aqueous environment. In the present study, eco-friendly Iron Oxide Nanoparticles (IONPs) are synthesized using solvothermal technique and successfully characterized using scanning and transmission electron microscopy (SEM and TEM respectively) and powder X-Ray diffraction (PXRD). These IONPs were further utilized for the remediation of toxic metal oxide nanoparticle, i.e., CeO2. Sorption experiments were also performed in complex aqueous solutions and real water samples to check its applicability in the natural environment. Reusability study was performed to show cost-effectiveness. Results show that these 200 nm-sized spherical IONPs, as revealed by SEM and TEM analysis, were magnetite (Fe3O4) and contained short-range crystallinity as confirmed from XRD spectra. Sorption experiments show that the composite follows the pseudo-second-order kinetic model. Further R2>0.99 for Langmuir sorption isotherm suggests chemisorption as probable removal mechanism with monolayer sorption of CeO2 NPs on IONP. More than 80% recovery of adsorbed CeO2 NPs through ultrasonication and magnetic separation of reaction precipitate confirms reusability of IONPs. Obtained removal % of CeO2 in various synthetic and real water samples was>90% signifying that IONPs are candidate adsorbent for the removal and recovery of toxic metal oxide nanoparticles from contaminated environmental water samples.  相似文献   
114.
Wetland ecosystems are of global significance having productive, regulatory and informative function. These wetlands are crucial for the long-term protection of water sources, as well as the survival of its unique biodiversity. Most of the wetlands of Turkey are now facing serious threat from the anthropogenic sources and now near to the verge of extinction. This study has been carried out to monitor vegetation dynamics and ecological status of wetlands of Koyna basin at spatial and temporal scale. This study has involved MODerate-resolution Imaging Spectroradiometer (MODIS) images of the year 2000, 2004 and 2008 on daily basis with spatial resolution of 1 km. The MODIS 16 days composite NDVI time series products of 250-m spatial resolution from year 2000 to 2008 has been utilized to monitor the ecological status of the wetlands. The European Nature Information System habitat classification map, meteorological data (precipitation, temperature) coupled with field data has been utilized to validate NDVI values of nine habitats in the wetlands. The time series analyses of NDVI data values have been correlated with the groundwater level depth from 1996 to 2004. The overall analysis has shown a declining trend of NDVI over the year 2000 to 2008, indicated a degraded wetland condition in span of 9 years.  相似文献   
115.
Odor emission rates are commonly measured in the laboratory or occasionally estimated with inverse modeling techniques. A modified inverse modeling approach is used to estimate source emission rates inside of a postdigestion centrifuge building of a water reclamation plant. Conventionally, inverse modeling methods divide an indoor environment in zones on the basis of structural design and estimate source emission rates using models that assume homogeneous distribution of agent concentrations within a zone and experimentally determined link functions to simulate airflows among zones. The modified approach segregates zones as a function of agent distribution rather than building design and identifies near and far fields. Near-field agent concentrations do not satisfy the assumption of homogeneous odor concentrations; far-field concentrations satisfy this assumption and are the only ones used to estimate emission rates. The predictive ability of the modified inverse modeling approach was validated with measured emission rate values; the difference between corresponding estimated and measured odor emission rates is not statistically significant. Similarly, the difference between measured and estimated hydrogen sulfide emission rates is also not statistically significant. The modified inverse modeling approach is easy to perform because it uses odor and odorant field measurements instead of complex chamber emission rate measurements.  相似文献   
116.
Chromate-resistant bacterial strain isolated from the soil of tannery was studied for Cr(VI) bioaccumulation in free and immobilised cells to evaluate its applicability in chromium removal from aqueous solution. Based on the comparative analysis of the 16S rRNA gene, and phenotypic and biochemical characterization, this strain was identified as Paenibacillus xylanilyticus MR12. Mechanism of Cr adsorption was also ascertained by chemical modifications of the bacterial biomass followed by Fourier transform infrared spectroscopy analysis of the cell wall constituents. The equilibrium biosorption analysed using isotherms (Langmuir, Freundlich and Dubinin–Redushkevich) and kinetics models (pseudo-first-order, second-order and Weber–Morris) revealed that the Langmuir model best correlated to experimental data, and Weber–Morris equation well described Cr(VI) biosorption kinetics. Polyvinyl alcohol alginate immobilised cells had the highest Cr(VI) removal efficiency than that of free cells and could also be reused four times for Cr(VI) removal. Complete reduction of chromate in simulated effluent containing Cu2+, Mg2+, Mn2+ and Zn2+ by immobilised cells, demonstrated potential applications of a novel immobilised bacterial strain MR12, as a vital bioresource in Cr(VI) bioremediation technology.  相似文献   
117.
This study investigated the need and applicability of wetland tourism for resource conservation, using the case of Ghodaghodi Lake Complex, a Ramsar Site in western Nepal. The travel cost method (TCM) was used to determine the recreation potential of the lake complex, while the contingent valuation method (CVM) was used to calculate willingness of visitors to pay an entry fee as a payment vehicle for conservation. The per capita travel cost was found to be NPR 540 (US $7.71), while the mean willingness to pay an entry fee was NPR 34 (US $0.48) per visitor per entry. In addition, factors affecting wetland visitation rates and maximum willingness to pay were identified. Policy implications include the establishment of an entry fee system to offset conservation budgetary constraints, government investment in social benefits equating to at least per capita travel cost identified, and public‐private partnerships, with community participation in tourism promotion and wetland conservation.  相似文献   
118.
The disposal of hazardous crude oil tank bottom sludge (COTBS) represents a significant waste management burden for South Mediterranean countries. Currently, the application of biological systems (bioremediation) for the treatment of COTBS is not widely practiced in these countries. Therefore, this study aims to develop the potential for bioremediation in this region through assessment of the abilities of indigenous hydrocarbonoclastic microorganisms from Libyan Hamada COTBS for the biotreatment of Libyan COTBS-contaminated environments. Bacteria were isolated from COTBS, COTBS-contaminated soil, treated COTBS-contaminated soil, and uncontaminated soil using Bushnell Hass medium amended with Hamada crude oil (1 %) as the main carbon source. Overall, 49 bacterial phenotypes were detected, and their individual abilities to degrade Hamada crude and selected COBTS fractions (naphthalene, phenanthrene, eicosane, octadecane and hexane) were evaluated using MT2 Biolog plates. Analyses using average well colour development showed that ~90 % of bacterial isolates were capable of utilizing representative aromatic fractions compared to 51 % utilization of representative aliphatics. Interestingly, more hydrocarbonoclastic isolates were obtained from treated contaminated soils (42.9 %) than from COTBS (26.5 %) or COTBS-contaminated (30.6 %) and control (0 %) soils. Hierarchical cluster analysis (HCA) separated the isolates into two clusters with microorganisms in cluster 2 being 1.7- to 5-fold better at hydrocarbon degradation than those in cluster 1. Cluster 2 isolates belonged to the putative hydrocarbon-degrading genera; Pseudomonas, Bacillus, Arthrobacter and Brevundimonas with 57 % of these isolates being obtained from treated COTBS-contaminated soil. Overall, this study demonstrates that the potential for PAH degradation exists for the bioremediation of Hamada COTBS-contaminated environments in Libya. This represents the first report on the isolation of hydrocarbonoclastic bacteria from Libyan COTBS and COTBS-contaminated soil.  相似文献   
119.
Triclosan is a common antimicrobial agent that is found in significant levels in the aquatic environment and may elicit effects on aquatic organisms through unexpected modes of action. In this study, triclosan was quantified in fish from the Kaveri River, India, by using the gas chromatography and mass spectrometry technique and it was found in the range of 0.73–50 ng/g wet weight (ww). The mean bioaccumulation factor based on water (BAFw 820) and sediment (BAFs 2.12) in the Kaveri River showed that triclosan is accumulative in fish, and reflects its feeding behavior. The bioaccumulation indicates triclosan's persistence or prevalence throughout the river stretch. Human risk assessment through dietary intake demonstrated that the triclosan exposure is five orders of magnitude lower than the acceptable daily intake (50 μg/kg bw) and US EPA reference dose (300 μg/kg bw/day). This investigation is the first to report the bioaccumulation of triclosan in freshwater fish from India. Further, the results indicate that this fish acts as a biomarker of exposure for triclosan and thus shall be used to report triclosan pollution in the future.  相似文献   
120.
Electrokinetic-enhanced phytoremediation of soils: Status and opportunities   总被引:2,自引:0,他引:2  
Phytoremediation is a sustainable process in which green plants are used for the removal or elimination of contaminants in soils. Both organic and inorganic contaminants can be removed or degraded by growing plants by several mechanisms, namely phytoaccumulation, phytostabilization, phytodegradation, rhizofiltration and rhizodegradation. Phytoremediation has several advantages: it can be applied in situ over large areas, the cost is low, and the soil does not undergo significant damages. However, the restoration of a contaminated site by phytoremediation requires a long treatment time since the remediation depends on the growth and the biological cycles of the plant. It is only applicable for shallow depths within the reach of the roots, and the remediation efficiency largely depends on the physico-chemical properties of the soil and the bioavailability of the contaminants. The combination of phytoremediation and electrokinetics has been proposed in an attempt to avoid, in part, the limitations of phytoremediation. Basically, the coupled phytoremediation–electrokinetic technology consists of the application of a low intensity electric field to the contaminated soil in the vicinity of growing plants. The electric field may enhance the removal of the contaminants by increasing the bioavailability of the contaminants. Variables that affect the coupled technology are: the use of AC or DC current, voltage level and mode of voltage application (continuous or periodic), soil pH evolution, and the addition of facilitating agents to enhance the mobility and bioavailability of the contaminants. Several technical and practical challenges still remain that must be overcome through future research for successful application of this coupled technology at actual field sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号