首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31421篇
  免费   328篇
  国内免费   353篇
安全科学   740篇
废物处理   1728篇
环保管理   4108篇
综合类   4534篇
基础理论   8492篇
环境理论   14篇
污染及防治   7848篇
评价与监测   2359篇
社会与环境   2131篇
灾害及防治   148篇
  2023年   139篇
  2022年   315篇
  2021年   320篇
  2020年   259篇
  2019年   243篇
  2018年   1771篇
  2017年   1701篇
  2016年   1715篇
  2015年   616篇
  2014年   748篇
  2013年   1864篇
  2012年   1352篇
  2011年   2439篇
  2010年   1527篇
  2009年   1505篇
  2008年   1898篇
  2007年   2226篇
  2006年   975篇
  2005年   821篇
  2004年   823篇
  2003年   779篇
  2002年   758篇
  2001年   734篇
  2000年   571篇
  1999年   362篇
  1998年   248篇
  1997年   249篇
  1996年   240篇
  1995年   296篇
  1994年   237篇
  1993年   215篇
  1992年   196篇
  1991年   198篇
  1990年   196篇
  1989年   196篇
  1988年   167篇
  1987年   143篇
  1986年   179篇
  1985年   155篇
  1984年   211篇
  1983年   164篇
  1982年   185篇
  1981年   163篇
  1980年   143篇
  1979年   157篇
  1978年   102篇
  1977年   105篇
  1975年   95篇
  1974年   96篇
  1972年   104篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
The use of petroleum-derived products should be avoided regarding the principles of green and sustainable chemistry. The work reported herein, is aimed at the liquefaction of pine shavings for the production of an environmentally-friendly polyol suitable to be used in the formulations of sprayable polyurethane foams. The biopolyols were obtained in high yield and were used to replace those derived from fossil sources, to produce more “greener” polyurethane foams and therefore, less dependent on petroleum sources, since the polyol component was substituted by products resulting from biomass liquefaction. The partial and fully exchange of the polyols was accomplished, and the results compared with a reference foam. The foams were afterward, chemical, physical, morphological, and mechanically characterized. The complete replacement of polyether polyol and polyol polyester has presented some similar characteristics as that used as a reference, validating that the path chosen for the development of more sustainable materials is on the right track for the contribution to a cleaner world.  相似文献   
982.
Poly(aspartic acid-itaconic acid) copolymers (PAI) is a new scale inhibitor for water treatment. Thus, it is necessary to investigate its biodegradability. The biodegradability of PAI was investigated through CO2 evolution tests under different conditions based on determination of carbon dioxide production. The investigation results showed that the degradation rate of PAI on day 10 and day 28 were respectively 38.7 and 79.5%, indicating that PAI was one kind of easily biodegradable scale inhibitors. With the increase in the content of itaconic acid in copolymerization process, the biodegradability of PAI was significantly reduced. In addition, the high biodegradability might be attributed to the existence of C–N bone-structure and more –COO–. Finally, Cu2+ could decrease the degradation percentage and the enzyme inhibition effect of Cu2+ was not the linear effect, but the “low-dosage effect”.  相似文献   
983.
Vinyl acetate (VAc) monomer of different percentage was grafted onto the recycled polyethylene terephthalate (r-PET) films using gamma irradiation. The properties of these modified films were characterized by Fourier transform infrared spectroscopy (FTIR), mechanical properties testing (Tensile strength, Elongation at break), dynamic mechanical analysis (DMA) and thermo-gravimetric analysis (TGA). The Tensile Strength (TS) of the modified PET film increased by 132.25?% to the highest value of 50.12 MPa at 15% VAc monomer concentration at 3 kGy gamma dose, while the elongation at break (EB) decreased by 31.83?%. FTIR was used to investigate the molecular interaction of the modified films. TGA revealed that curve of the modified PET film shifted toward higher temperature region by 95?°C, which is very close to that of PET film made from virgin flakes. The results indicate that modified PET films of better mechanical and thermal properties were successfully prepared using VAc monomer grafting by gamma irradiation technique.  相似文献   
984.
Blending of polylactide (PLA) with low stereoregularity and polyhedral oligomeric silsesquioxane grafted with arms of poly(ethylene glycol) methyl ether, acting as a plasticizer, allowed us previously to obtain a novel stable elastomeric-like material. The present contribution focuses on the properties of semi-crystalline PLA plasticized with this compound. Melt blends of PLA with 5–15 wt% of the plasticizer, were compression molded, quenched and annealed, which enabled cold-crystallization. The glass transition temperature of the blends and their drawability depended on their crystallinity and plasticizer content. The best ductility was reached at the plasticizer content of 15 wt%; the achieved strain at break was 6.5 (650%) and 1.3 (130%), for the quenched and annealed material, respectively. The latter value exceeded 20 times the strain at break of neat crystalline PLA. The tensile toughness of the annealed 15 wt% blend was 12 times larger than that of crystalline PLA. Moreover, annealing of 15 wt% blend improved its yield strength by 40%. Despite the two peaks of the loss modulus, indicating the two glass transitions in this blend, no heterogeneities were found by scanning electron microscopy, indicating that the plasticizer enriched phase formed instead of distinct inclusions of the plasticizer.  相似文献   
985.
The utilization of the coffee husk fiber (CHF) from the coffee industry as a reinforcing filler in the preparation of a cost-effective thermoplastic based composite was explored in this study. The chemical composition and thermal properties of the CHF were investigated and compared with those of wood fiber (WF). CHF proved to be mainly composed of cellulose, hemicellulose and lignin, and exhibited similar thermal behavior to WF. High density polyethylene (HDPE) composites with CHF loadings of from 40 to 70% were prepared using melt processing and extrusion. The processing properties, mechanical behavior, water absorption and thermal performance of these composites were investigated. The effect of maleated polyethylene (MAPE) used as a coupling agent on the composite was explored. The experimental results showed that increasing the CHF loading in the HDPE matrix resulted in an increase in the modulus and thermal properties of the composites, but resulted in poor water resistance. The addition of a 4% MAPE significantly improved the interfacial behavior of the hydrophilic lignocellulosic fiber and the hydrophobic polymer matrix.  相似文献   
986.
The effects of three compounded curing agents on the properties and performance of the urea-formaldehyde (UF) resin were investigated in this study. The compounded curing agents were prepared by mixing ammonium chloride with hexamethylenetetramine, citric acid, and oxalic acid respectively at a ratio of 1:1, named N-H, N–CA, and N–OA, respectively. The curing process, crystallinity, and physical properties were measured, and the three-ply plywood was fabricated to measure its prepress strength, wet shear strength, and formaldehyde emission. Results showed that the compounded curing agents N–CA and N–OA enhanced the initial viscosity, crosslinking density and thermal stability of UF resin. Additionally, the prepress strength of the plywood bonded by UF resin with N–CA and N–OA increased by 82 and 111% respectively compared to the UF resin with NH4Cl, and the wet shear strength increased by 14 and 16%, the formaldehyde emission decreased by 19 and 42% respectively. However, owing to the short pot-life of these curing agent limited their storage time, the curing agents N–CA and N–OA should be applied to fabricate plywood in winter for obtaining a better bond strength and a lower formaldehyde emission. While the UF resin with N–HT showed a suitable pot-life, so it could be applied to fabricate plywood in summer for long time storage and avoiding procuring problem.  相似文献   
987.
Cassava starch waste hydrolysates (CSWHs) with different degrees of polymerisation, i.e., CSWHs-1, CSWHs-2 and CSWHs-3, were prepared through the hydrolysis of cassava starch waste with thermostable a-amylase from Thermococcus sp. HJ21. The prepared CSWHs were then used as a carbon source for curdlan production with Alcaligenes faecalis ATCC 31749. The amount of curdlan produced and the glucosyltransferase activity during curdlan synthesis increased more obviously when CSWHs-2 was used as the carbon source than when glucose was used. Using both carbon sources, the maximum curdlan production was observed at day 5, and the maximum glucosyltransferase activity was observed at day 4. Glucosyltransferase activity decreased thereafter, and biomass continued to increase until the end of the experiment (day 6). Results indicated that the enhanced curdlan production with CSWHs as the carbon source was highly correlated with glucosyltransferase activity.  相似文献   
988.
Biocomposites of acrylonitrile butadiene rubber (NBR) reinforced with chicken feather fibre (CF) were prepared using dicumyl peroxide (DCP) as vulcanizing agent. Composites with three series of chicken feather fibres were studied i.e., raw (RCF), sterilized (SCF) and alkali treated (ACF). The cure characteristics of composites were studied. The mechanical properties of NBR were found to be improved by the incorporation of chicken feather fibre in all forms. Surface modification of the fibre was done by alkaline treatment to improve the interfacial adhesion and it characterised by FTIR. Better properties are shown by the composites with ACF. The swelling behaviour of the composites in N,N-dimethylformamide, acetonitrile, dimethyl sulfoxide and water were analyzed for the swelling coefficient values. The biodegradable characteristics of CF reinforced NBR composites were studied by soil burial test which indicated that it is an eco-friendly and acceptable material. Scanning electron microscopy studies support the results of mechanical properties. The outcome obtained from this study is believed to assist the development of environmentally–friendly composites especially for specific product applications like oil seals, hoses and automobile bushes etc.  相似文献   
989.
The objective of the present work was to study the preparation of a novel bio-based product from gelatin (GT) and natural rubber (NR) using potassium persulphate (KPS) as an initiator. The GT and NR composites (GT/NR composites) containing KPS were formed in an aqueous latex solution. The chemical structure of the GT/NR composite was characterized by ATR-FTIR, and XRD. The highest tensile strength was observed in a 9/1 GT/NR composite and the elongation at break of this composite was improved by the addition of both NR and glycerol. In addition, the swelling ratio increased as a function of increasing GT content in the composite. The thermal stability of the GT was improved after the formation of the chemical interaction between the NR and GT helped by the KPS. The best ratio of the GT/NR composite was 3/7 GT/NR. This environmentally friendly composite easily decomposed in natural soil within 30 days. The novel biopolymer showed high mechanical properties, water resistance and was produced in an environmentally compatible process. The NR was able to improve some of the physical and mechanical properties of GT biofilms produced from the composite. Possible future applications of this composite are for medical materials, and the packaging and life extension of food products.  相似文献   
990.
The structural, thermal, mechanical, and biodegradable properties of composite materials made from polylactide (PLA) and agricultural residues (arrowroot (Maranta arundinacea) fibre, AF) were evaluated. Melt blended glycidyl methacrylate-grafted polylactide (PLA-g-GMA) and coupling agent-treated arrowroot fibre (TAF) formed the PLA-g-GMA/TAF composite, which had better properties than the PLA/AF composite. The water resistance of the PLA-g-GMA/TAF composite was greater than that of the PLA/AF composite; the release of PLA in water from the PLA/AF and PLA-g-GMA/TAF composites indicated good biological activity. The PLA-g-GMA/TAF material had better mechanical properties than PLA/AF. This behaviour was attributed to better compatibility between the grafted polymer and TAF. The results indicated that the Tg of PLA was increased by the addition of fibre, which may have improved the heat resistance of PLA. Furthermore, the mass losses following burial in soil compost indicated that both materials were biodegradable, especially at high levels of AF or TAF substitution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号