首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32082篇
  免费   430篇
  国内免费   460篇
安全科学   1051篇
废物处理   1341篇
环保管理   4692篇
综合类   4855篇
基础理论   8466篇
环境理论   10篇
污染及防治   8695篇
评价与监测   1943篇
社会与环境   1687篇
灾害及防治   232篇
  2022年   259篇
  2021年   289篇
  2020年   262篇
  2019年   251篇
  2018年   477篇
  2017年   455篇
  2016年   723篇
  2015年   586篇
  2014年   863篇
  2013年   2663篇
  2012年   1079篇
  2011年   1502篇
  2010年   1157篇
  2009年   1329篇
  2008年   1478篇
  2007年   1562篇
  2006年   1332篇
  2005年   1128篇
  2004年   1128篇
  2003年   1063篇
  2002年   1023篇
  2001年   1238篇
  2000年   928篇
  1999年   570篇
  1998年   406篇
  1997年   409篇
  1996年   445篇
  1995年   481篇
  1994年   427篇
  1993年   389篇
  1992年   339篇
  1991年   337篇
  1990年   348篇
  1989年   331篇
  1988年   308篇
  1987年   281篇
  1986年   272篇
  1985年   270篇
  1984年   326篇
  1983年   291篇
  1982年   320篇
  1981年   306篇
  1980年   252篇
  1979年   285篇
  1978年   179篇
  1977年   180篇
  1976年   153篇
  1975年   167篇
  1973年   164篇
  1972年   186篇
排序方式: 共有10000条查询结果,搜索用时 484 毫秒
941.
Land application of wastewater has become an important disposal option for food-processing plants operating year-round. However, there are concerns about nutrient leaching from winter wastewater application on frozen soils. In this study, P and N leaching were compared between nongrowing season application of tertiary-treated wastewater plus growing season application of partially treated wastewater (NGS) vs. growing season application of partially treated wastewater (GS) containing high levels of soil P. As required by the Minnesota Pollution Control Agency (MPCA), the wastewater applied to the NGS fields during October through March was treated such that it contained < or =6 mg L(-1) total phosphorus (TP), < or =10 mg L(-1) NO3-N, and < or =20 mg L(-1) total Kjeldahl nitrogen (TKN). The only regulation for wastewater application during the growing season (April through September) was that cumulatively it did not exceed the agronomic N requirements of the crop in any sprayfield. Application of tertiary-treated wastewater during the nongrowing season plus partially treated wastewater during the growing season did not significantly increase NO3-N leaching compared with growing season application of nonregulated wastewater. However, median TP concentration in leachate was significantly higher from the NGS (3.56 mg L(-1)) than from the GS sprayfields (0.52 mg L(-1)) or nonirrigated sites (0.52 mg L(-1)). Median TP leaching loss was also significantly higher from the NGS sprayfields (57 kg ha(-1)) than from the GS (7.4 kg ha(-1)) or control sites (6.9 kg ha(-1)). This was mainly due to higher hydraulic loading from winter wastewater application and limited or no crop P uptake during winter. Results from this study indicate that winter application of even low P potato-processing wastewater to high P soils can accelerate P leaching. We conclude that the regulation of winter wastewater application on frozen soils should be based on wastewater P concentration and permissible loading. We also recommend that winter irrigation should take soil P saturation into consideration.  相似文献   
942.
The typical method of cool-season grass-seed production in Mediterranean climates briefly exposes surface waters to potentially high concentrations of the herbicide diuron [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] during the initial season of growth. To better understand the process, and the degree, of diuron transport from agricultural fields, two grass-seed fields in the Willamette Valley of Oregon were monitored for diuron loss in surface runoff and tile drainage during the first wet season after planting. Initial diuron concentrations in surface runoff were high (>1000 microg L(-1) in one field and >100 microg L(-1) in the other), though they decreased by two orders of magnitude by the end of the season. Concentrations in the tile drains were as much as 1000 times lower than in the surface runoff during the first few weeks of runoff events, and they remained lower than surface water concentrations throughout the season. Total losses in surface runoff were between 1.3 and 3% of the amount applied-much higher than losses via the tile drains. It is also shown by means of a simple first-order decay model that, when little information is available, it may be best to describe diuron depletion in runoff water as a function of cumulative rainfall during the wet season.  相似文献   
943.
Forage-based livestock systems have been implicated as major contributors to deteriorating water quality, particularly for phosphorus (P) from commercial fertilizers and manures affecting surface and ground water quality. Little information exists regarding possible magnitudes of nutrient losses from pastures that are managed for both grazing and hay production and how these might impact adjacent bodies of water. We examined the changes that have occurred in soil fertility levels of rhizoma peanut (Arachis glabrata Benth.)-based beef cattle pastures (n = 4) in Florida from 1988 to 2002. These pastures were managed for grazing in spring followed by haying in late summer and were fertilized annually with P (39 kg P2O5 ha(-1)) and K (68 kg K2O ha(-1)). Additionally, we investigated trends in water quality parameters and trophic state index (TSI) of lakes (n = 3) associated with beef cattle operations from 1993 to 2002. Overall, there was no spatial or temporal buildup of soil P and other crop nutrients despite the annual application of fertilizers and daily in-field loading of animal waste. In fact, soil fertility levels showed a declining trend for crop nutrient levels, especially soil P (y = 146.57 - 8.14 x year; r2= 0.75), even though the fields had a history of P fertilization and the cattle were rotated into the legume fields. Our results indicate that when nutrients are not applied in excess, cow-calf systems are slight exporters of P, K, Ca, and Mg through removal of cut hay. Water quality in lakes associated with cattle production was "good" (30-46 TSI) based on the Florida Water Quality Standard. These findings indicate that properly managed livestock operations may not be major contributors to excess loads of nutrients (especially P) in surface water.  相似文献   
944.
Phosphorus-immobilizing amendments can be useful in minimizing P leaching from high P soils that may be irrigated with wastewater. This study tested the P-binding ability of various amendment materials in a laboratory incubation experiment and then tested the best amendment in a field setup using drainage lysimeters. The laboratory experiment involved incubating 100-g samples of soil (72 mg kg(-1) water-extractable phosphorus, WEP) with various amendments at different rates for 63 d at field moisture capacity and 25 degrees C. The amendments tested were alum [Al2SO4)3.14H2O], ferric chloride (FeCl3), calcium carbonate (CaCO3), water treatment residual (WTR), and sugarbeet lime (SBL). Ferric chloride and alum at rates of 1.5 and 3.9 g kg(-1), respectively, were the most effective amendments that decreased WEP to 20 mg kg(-1), below which leaching has previously been shown to be low. Alum (1.3 kg m(-2)), which is less sensitive to redox conditions, was subsequently tested under field conditions, where it reduced WEP concentration in the 0- to 0.15-m layer from 119 mg kg(-1) on Day 0 to 36.1 mg kg(-1) (85% decrease) on Day 41. Lysimeter breakthrough tests using tertiary-treated potato-processing wastewater (mean total phosphorus [TP] = 3.4 mg L(-1)) showed that alum application reduced leachate TP and soluble reactive phosphorus (SRP) concentrations by 27 and 25%, respectively. These results indicate that alum application may be an effective strategy to immobilize P in high P coarse-textured soils. The relatively smaller decreases in TP and SRP in the leachate compared to WEP suggest some of the P may be coming from depths below 0.2 m. Thus, to achieve higher P sequestration, deeper incorporation of the alum may be necessary.  相似文献   
945.
The objective of this study was to quantify C and N mineralization rates from a range of organic amendments that differed in their total C and N contents and C quality, to gain a better understanding of their influence on the soil N cycle. A pelletized poultry manure (PP), two green waste-based composts (GWCa, GWCb), a straw-based compost (SBC), and a vermi-cast (VER) were incubated in a coarse-textured soil at 15 degrees C for 142 d. The C quality of each amendment was determined by chemical analysis and by 13C nuclear magnetic resonance (NMR). Carbon dioxide (CO2-C) evolution was determined using alkali traps. Gross N mineralization rates were calculated by 15N isotopic pool dilution. The CO2-C evolution rates and gross N mineralization rates were generally higher in amended soils than in the control soil. With the exception of GWCb all amendments released inorganic N at concentrations that would be high enough to warrant a reduction in inorganic N fertilizer application rates. The amount of N released from PP was high indicating that application rates should be reduced, or alternative amendments used, to minimize leaching losses in regions where ground water quality is of concern. There was a highly significant relationship between CO2-C evolution and gross N mineralization (R2= 0.95). Some of the chemically determined C quality parameters had significant relationships (p < 0.05) with both the cumulative amounts of C and N evolved. However, we found no significant relationships between 13C NMR spectral groupings, or their ratios, and either the CO2-C evolved or gross N mineralized from the amendments.  相似文献   
946.
Field trials were established to compare alum-treated poultry litter (ATPL), normal poultry litter (NPL), and triple superphosphate (TSP) as fertilizer sources for corn (Zea mays L.) when applied at rates based on current litter management strategies in Virginia. Trials were established in the Costal Plain and Piedmont physiographic regions near Painter and Orange, VA, respectively. Nitrogen-based applications of ATPL or NPL applied at rates estimated to supply 173 kg of plant-available nitrogen (PAN) ha(-1) resulted in significantly lower grain yields than treatments receiving commercial fertilizer at the same rate in 2000 and 2001 at Painter. These decreases in grain yield at the N-based application rates were attributed to inadequate N availability, resulting from overestimates of PAN as demonstrated by tissue N concentrations. However, at Orange no treatment effects on grain yield were observed. Applications of ATPL did not affect Al concentrations in corn ear-leaves at either location. Exchangeable soil Al concentrations were most elevated in treatments receiving only NH4NO3 as an N source. At N-based application rates, the ATPL resulted in lower Mehlich 1-extractable P (M1-P) and water-extractable soil phosphorus (H2O-P) concentrations compared to the application of NPL. A portion of this reduction could be attributed to lower rates of P applied in the N-based ATPL treatments. Runoff collected from treatments which received ATPL 2 d before conducting rainfall simulations contained 61 to 71% less dissolved reactive phosphorus (DRP) than treatments receiving NPL. These results show that ATPL may be used as a nutrient source for corn production without significant management alterations. Alum-treated poultry litter can also reduce the environmental impact of litter applications, primarily through minimizing the P status of soils receiving long-term applications of litter and reductions in runoff DRP losses shortly after application.  相似文献   
947.
What is soil organic matter worth?   总被引:3,自引:0,他引:3  
The conservation and restoration of soil organic matter are often advocated because of the generally beneficial effects on soil attributes for plant growth and crop production. More recently, organic matter has become important as a terrestrial sink and store for C and N. We have attempted to derive a monetary value of soil organic matter for crop production and storage functions in three contrasting New Zealand soil orders (Gley, Melanic, and Granular Soils). Soil chemical and physical characteristics of real-life examples of three pairs of matched soils with low organic matter contents (after long-term continuous cropping for vegetables or maize) or high organic matter content (continuous pasture) were used as input data for a pasture (grass-clover) production model. The differences in pasture dry matter yields (non-irrigated) were calculated for three climate scenarios (wet, dry, and average years) and the yields converted to an equivalent weight and financial value of milk solids. We also estimated the hypothetical value of the C and N sequestered during the recovery phase of the low organic matter content soils assuming trading with C and N credits. For all three soil orders, and for the three climate scenarios, pasture dry matter yields were decreased in the soils with lower organic matter contents. The extra organic matter in the high C soils was estimated to be worth NZ$27 to NZ$150 ha(-1) yr(-1) in terms of increased milk solids production. The decreased yields from the previously cropped soils were predicted to persist for 36 to 125 yr, but with declining effect as organic matter gradually recovered, giving an accumulated loss in pastoral production worth around NZ$518 to NZ$1239 ha(-1). This was 42 to 73 times lower than the hypothetical value of the organic matter as a sequestering agent for C and N, which varied between NZ$22,963 to NZ$90,849 depending on the soil, region, discount rates, and values used for carbon and nitrogen credits.  相似文献   
948.
Soluble salts, nutrients, and pathogenic bacteria in feedlot-pen runoff have the potential to cause pollution of the environment. A 2-yr study (1998-1999) was conducted at a beef cattle (Bos taurus) feedlot in southern Alberta, Canada, to determine the effect of bedding material [barley (Hordeum vulgare L.) straw versus wood chips] and within-pen location on the chemical and bacterial properties of pen-floor runoff. Runoff was generated with a portable rainfall simulator and analyzed for chemical content (nitrogen [N], phosphorus [P], soluble salts, electrical conductivity [EC], sodium adsorption ratio [SAR], dissolved oxygen [DO], and pH) and populations of three groups of bacteria (Escherichia coli, total coliforms, total aerobic heterotrophs at 27 degrees C) in 1998 and 1999. Bedding had a significant (P < or = 0.05) effect on NH4-N concentration and load in 1999, SO4 load in 1998, SO4 concentration and load in 1999, and total coliforms in both years; where these three variables were higher in wood than straw pens. Location had a significant effect on EC and concentrations of total Kjeldahl nitrogen (TKN), Na, K, SO4, and Cl in 1998, and total coliforms in both years. These seven variables were higher at the bedding pack than pen floor location, indicating that bedding packs were major reservoirs of TKN, soluble salts, and total coliforms. Significantly higher dissolved reactive phosphorus (DRP), total P, and NH4-N concentrations and loads at the bedding pack location in wood pens in 1998, and a similar trend for TKN concentration in 1999, indicated that this bedding-location treatment was a greater source of nutrients to runoff than the other three bedding-location treatments. Bedding, location, and their interaction may therefore be a potential tool to manage nutrients, soluble salts, and bacteria in feedlot runoff.  相似文献   
949.
Upflow reactors for riparian zone denitrification   总被引:1,自引:0,他引:1  
We used permeable reactive subsurface barriers consisting of a C source (wood particles), with very high hydraulic conductivities ( approximately 0.1-1 cm s(-1)), to provide high rates of riparian zone NO3-N removal at two field sites in an agricultural area of southwestern Ontario. At one site, a 0.73-m3 reactor containing fine wood particles was monitored for a 20-mo period and achieved a 33% reduction in mean influent NO3-N concentration of 11.5 mg L(-1) and a mean removal rate of 4.5 mg L(-1) d(-1) (0.7 g m(-2) d(-1)). At the second site, four smaller reactors (0.21 m3 each), two containing fine wood particles and two containing coarse wood particles, were monitored for a 4-mo period and were successful in attenuating mean influent NO3-N concentrations of 23.7 to 35.1 mg L(-1) by 41 to 63%. Mean reaction rates for the two coarse-particle reactors (3.2 and 7.8 mg L(-1) d(-1), or 1.5 and 3.4 g m(-2) d(-1)) were not significantly different (p > 0.2) than the rates observed in the two fine-particle reactors (5.0 and 9.9 mg L(-1) d(-1), or 1.8-3.5 g m(-2) d(-1)). A two-dimensional ground water flow model is used to illustrate how permeable reactive barriers such as these can be used to redirect ground water flow within riparian zones, potentially augmenting NO3- removal in this environment.  相似文献   
950.
Different livestock feeds manipulations have been reported to reduce the total P concentration in manure. Information on the influence of these dietary manipulation strategies on the forms of P in manure is, however, limited. This study was, therefore, conducted to investigate the effect of diet manipulation through feed micronization and enzyme supplementation on the forms of P in swine manure. Eight growing pigs were fed four diets: barley-raw pea (BRP), barley-micronized pea (BMP), barley-raw pea with enzyme (BRPE), and barley-micronized pea with enzyme (BMPE) in a 4 x 4 Latin square design. Because we are interested in the effect of enzyme cocktail and pea micronization on manure P, we did not reduce the non-phytate P with enzyme addition in this study. The fecal material and urine were collected and analyzed for total P. Fecal material was fractionated to determine the total P in H2O-, NaHCO3-, NaOH-, and HCl-extractable fractions. The total P in the residual fractions was also determined. About 98% of the total P excreted by the pigs was found in the fecal material. Inclusion of micronized pea in pig diet did not have any significant effect (p > 0.1) on either the total P or the different P fractions in the manure. The labile P (the sum of H2O-P and NaHCO3-P) was significantly reduced (p < 0.05) by the addition of enzyme to swine diets. Pigs fed the BRPE and BMPE had 14 and 18% lower labile P, respectively, compared with pigs fed the BRP. Enzyme addition to pig diets reduced not only the total P in manure, but also the labile P fraction, which is of great environmental concern. Thus, the potential of P loss to runoff and the subsequent eutrophication can be reduced by enzyme addition to pig diets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号