首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15993篇
  免费   204篇
  国内免费   166篇
安全科学   452篇
废物处理   584篇
环保管理   2193篇
综合类   3150篇
基础理论   4021篇
环境理论   10篇
污染及防治   3915篇
评价与监测   971篇
社会与环境   940篇
灾害及防治   127篇
  2022年   121篇
  2021年   128篇
  2020年   112篇
  2019年   137篇
  2018年   200篇
  2017年   244篇
  2016年   334篇
  2015年   284篇
  2014年   374篇
  2013年   1342篇
  2012年   479篇
  2011年   638篇
  2010年   510篇
  2009年   582篇
  2008年   647篇
  2007年   674篇
  2006年   634篇
  2005年   508篇
  2004年   488篇
  2003年   501篇
  2002年   436篇
  2001年   543篇
  2000年   424篇
  1999年   243篇
  1998年   199篇
  1997年   192篇
  1996年   208篇
  1995年   216篇
  1994年   208篇
  1993年   205篇
  1992年   217篇
  1991年   203篇
  1990年   205篇
  1989年   175篇
  1988年   152篇
  1987年   132篇
  1986年   157篇
  1985年   158篇
  1984年   160篇
  1983年   162篇
  1982年   156篇
  1981年   163篇
  1980年   151篇
  1979年   145篇
  1978年   108篇
  1977年   121篇
  1974年   109篇
  1973年   91篇
  1972年   107篇
  1971年   88篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
As indoor smoking bans have become widely adopted, some U.S. communities are considering restricting smoking outdoors, creating a need for measurements of air pollution near smokers outdoors. Personal exposure experiments were conducted with four to five participants at six sidewalk bus stops located 1.5–3.3 m from the curb of two heavily traveled California arterial highways with 3300–5100 vehicles per hour. At each bus stop, a smoker in the group smoked a cigarette. Gravimetrically calibrated continuous monitors were used to measure fine particle concentrations (aerodynamic diameter ≤2.5 µm; PM2.5) in the breathing zones (within 0.2 m from the nose and mouth) of each participant. At each bus stop, ultrafine particles (UFP), wind speed, temperature, relative humidity, and traffic counts were also measured. For 13 cigarette experiments, the mean PM2.5 personal exposure of the nonsmoker seated 0.5 m from the smoker during a 5-min cigarette ranged from 15 to 153 µg/m3. Of four persons seated on the bench, the smoker received the highest PM2.5 breathing-zone exposure of 192 µg/m3. There was a strong proximity effect: nonsmokers at distances 0.5, 1.0, and 1.5 m from the smoker received mean PM2.5 personal exposures of 59, 40, and 28 µg/m3, respectively, compared with a background level of 1.7 µg/m3. Like the PM2.5 concentrations, UFP concentrations measured 0.5 m from the smoker increased abruptly when a cigarette started and decreased when the cigarette ended, averaging 44,500 particles/cm3 compared with the background level of 7200 particles/cm3. During nonsmoking periods, the UFP background concentrations showed occasional peaks due to traffic, whereas PM2.5 background concentrations were extremely low. The results indicate that a single cigarette smoked outdoors at a bus stop can cause PM2.5 and UFP concentrations near the smoker that are 16–35 and 6.2 times, respectively, higher than the background concentrations due to cars and trucks on an adjacent arterial highway.

Implications: Rules banning smoking indoors have been widely adopted in the United States and in many countries. Some communities are considering smoking bans that would apply to outdoor locations. Although many measurements are available of pollutant concentrations from secondhand smoke at indoor locations, few measurements are available of exposure to secondhand smoke outdoors. This study provides new data on exposure to fine and ultrafine particles from secondhand smoke near a smoker outdoors. The levels are compared with the exposure measured next to a highway. The findings are important for policies that might be developed for reducing exposure to secondhand smoke outdoors.  相似文献   

902.
A survey of key indoor air quality (IAQ) parameters and resident health was carried out in 72 apartments within a single low-income senior housing building in Phoenix, Arizona. Air sampling was carried out simultaneously with a questionnaire on personal habits and general health of residents. Mean PM10 concentrations are 66±16, 58±13, and 24±3 μg/m3 and mean PM2.5 concentrations are 62±16, 53±13, and 20±2 μg/m3 for the living room, kitchen, and outdoor balcony, respectively. Median PM10 concentrations are 17, 18 and 17 μg/m3 and median PM2.5 concentrations are 13, 14, and 13 μg/m3, respectively. The initial results indicate that increased indoor particle concentrations coincide with residents who report smoking cigarettes. Indoor formaldehyde concentrations revealed median levels of 36.9, 38.8, and 4.3 ppb in the living room, kitchen, and balcony, respectively. Results show that 36% of living room samples and 44% of kitchen samples exceeded the Health Canada REL for chronic exposure to formaldehyde (40 ppb). Associations between occupants’ behavior, self-reported health conditions, and IAQ are evaluated.
Implications:This study provides a characterization of indoor air quality (IAQ) of subsidized apartments for seniors in Phoenix, Arizona. It is important for policy makers to understand the environments in which low-income seniors live, as they are vulnerable to the health impacts from poor IAQ. Formaldehyde concentrations were found to exceed the Health Canada 8-hr reference exposure level (REL) for up to 44% of indoor samples. Particulate matter exposure was governed by resident behavior (i.e., smoking). Associations between occupants’ behavior, IAQ, and self-reported health conditions are evaluated. This work can provide a foundation for subsequent remediation of IAQ conditions.  相似文献   
903.
Rural and background sites provide valuable information on the concentration and optical properties of organic, elemental, and water-soluble organic carbon (OC, EC, and WSOC), which are relevant for understanding the climate forcing potential of regional atmospheric aerosols. To quantify climate- and air quality-relevant characteristics of carbonaceous aerosol in the central United States, a regional background site in central Texas was chosen for long-term measurement. Back trajectory (BT) analysis, ambient OC, EC, and WSOC concentrations and absorption parameters are reported for the first 15 months of a long-term campaign (May 2011–August 2012). BT analysis indicates consistent north–south airflow connecting central Texas to the Central Plains. Central Texas aerosols exhibited seasonal trends with increased fine particulate matter (<2.5 μm aerodynamic diameter, PM2.5) and OC during the summer (PM2.5 = 10.9 μg m?3 and OC = 3.0 μg m?3) and elevated EC during the winter (0.22 μg m?3). When compared to measurements in Dallas and Houston, TX, central Texas OC appears to have mixed urban and rural sources. However, central Texas EC appears to be dominated by transport of urban emissions. WSOC averaged 63% of the annual OC, with little seasonal variability in this ratio. To monitor brown carbon (BrC), absorption was measured for the aqueous WSOC extracts. Light absorption coefficients for EC and BrC were highest during summer (EC MAC = 11 m2 g?1 and BRC MAE365 = 0.15 m2 g?1). Results from optical analysis indicate that regional aerosol absorption is mostly due to EC with summertime peaks in BrC attenuation. This study represents the first reported values of WSOC absorption, MAE365, for the central United States.
Implications:Background concentration and absorption measurements are essential in determining regional potential radiative forcing due to atmospheric aerosols. Back trajectory, chemical, and optical analysis of PM2.5 was used to determine climatic and air quality implications of urban outflow to a regional receptor site, representative of the central United States. Results indicate that central Texas organic carbon has mixed urban and rural sources, while elemental carbon is controlled by the transport of urban emissions. Analysis of aerosol absorption showed black carbon as the dominant absorber, with less brown carbon absorption than regional studies in California and the southeastern United States.  相似文献   
904.
Detailed hourly precipitation data are required for long-range modeling of dispersion and wet deposition of particulate matter and water-soluble pollutants using the CALPUFF model. In sparsely populated areas such as the north central United States, ground-based precipitation measurement stations may be too widely spaced to offer a complete and accurate spatial representation of hourly precipitation within a modeling domain. The availability of remotely sensed precipitation data by satellite and the National Weather Service array of next-generation radars (NEXRAD) deployed nationally provide an opportunity to improve on the paucity of data for these areas. Before adopting a new method of precipitation estimation in a modeling protocol, it should be compared with the ground-based precipitation measurements, which are currently relied upon for modeling purposes. This paper presents a statistical comparison between hourly precipitation measurements for the years 2006 through 2008 at 25 ground-based stations in the north central United States and radar-based precipitation measurements available from the National Center for Environmental Predictions (NCEP) as Stage IV data at the nearest grid cell to each selected precipitation station. It was found that the statistical agreement between the two methods depends strongly on whether the ground-based hourly precipitation is measured to within 0.1 in/hr or to within 0.01 in/hr. The results of the statistical comparison indicate that it would be more accurate to use gridded Stage IV precipitation data in a gridded dispersion model for a long-range simulation, than to rely on precipitation data interpolated between widely scattered rain gauges.

Implications:

The current reliance on ground-based rain gauges for precipitation events and hourly data for modeling of dispersion and wet deposition of particulate matter and water-soluble pollutants results in potentially large discontinuity in data coverage and the need to extrapolate data between monitoring stations. The use of radar-based precipitation data, which is available for the entire continental United States and nearby areas, would resolve these data gaps and provide a complete and accurate spatial representation of hourly precipitation within a large modeling domain.  相似文献   

905.
Human exposures to criteria and hazardous air pollutants (HAPs) in urban areas vary greatly due to temporal-spatial variations in emissions, changing meteorology, varying proximity to sources, as well as due to building, vehicle, and other environmental characteristics that influence the amounts of ambient pollutants that penetrate or infiltrate into these microenvironments. Consequently, the exposure estimates derived from central-site ambient measurements are uncertain and tend to underestimate actual exposures. The Exposure Classification Project (ECP) was conducted to measure pollutant concentrations for common urban microenvironments (MEs) for use in evaluating the results of regulatory human exposure models. Nearly 500 sets of measurements were made in three Los Angeles County communities during fall 2008, winter 2009, and summer 2009. MEs included in-vehicle, near-road, outdoor, and indoor locations accessible to the general public. Contemporaneous 1- to 15-min average personal breathing zone concentrations of carbon monoxide (CO), carbon dioxide (CO2), volatile organic compounds (VOCs), nitric oxide (NO), nitrogen oxides (NOx), particulate matter (<2.5 μm diameter; PM2.5) mass, ultrafine particle (UFP; <100 nm diameter) number, black carbon (BC), speciated HAPs (e.g., benzene, toluene, ethylbenzene, xylenes [BTEX], 1,3-butadiene), and ozone (O3) were measured continuously. In-vehicle and inside/outside measurements were made in various passenger vehicle types and in public buildings to estimate penetration or infiltration factors. A large fraction of the observed pollutant concentrations for on-road MEs, especially near diesel trucks, was unrelated to ambient measurements at nearby monitors. Comparisons of ME concentrations estimated using the median ME/ambient ratio versus regression slopes and intercepts indicate that the regression approach may be more accurate for on-road MEs. Ranges in the ME/ambient ratios among ME categories were generally greater than differences among the three communities for the same ME category, suggesting that the ME proximity factors may be more broadly applicable to urban MEs.
Implications:Estimates of population exposure to air pollutants extrapolated from ambient measurements at ambient fixed site monitors or exposure surrogates are prone to uncertainty. This study measured concentrations of mobile source air toxics (MSAT) and related criteria pollutants within in-vehicle, outdoor near-road, and indoor urban MEs to provide multipollutant ME measurements that can be used to calibrate regulatory exposure models.  相似文献   
906.
The U.S. Environmental Protection Agency (EPA) initiated the national PM2.5 Chemical Speciation Monitoring Network (CSN) in 2000 to support evaluation of long-term trends and to better quantify the impact of sources on particulate matter (PM) concentrations in the size range below 2.5 μm aerodynamic diameter (PM2.5; fine particles). The network peaked at more than 260 sites in 2005. In response to the 1999 Regional Haze Rule and the need to better understand the regional transport of PM, EPA also augmented the long-existing Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility monitoring network in 2000, adding nearly 100 additional IMPROVE sites in rural Class 1 Areas across the country. Both networks measure the major chemical components of PM2.5 using historically accepted filter-based methods. Components measured by both networks include major anions, carbonaceous material, and a series of trace elements. CSN also measures ammonium and other cations directly, whereas IMPROVE estimates ammonium assuming complete neutralization of the measured sulfate and nitrate. IMPROVE also measures chloride and nitrite. In general, the field and laboratory approaches used in the two networks are similar; however, there are numerous, often subtle differences in sampling and chemical analysis methods, shipping, and quality control practices. These could potentially affect merging the two data sets when used to understand better the impact of sources on PM concentrations and the regional nature and long-range transport of PM2.5. This paper describes, for the first time in the peer-reviewed literature, these networks as they have existed since 2000, outlines differences in field and laboratory approaches, provides a summary of the analytical parameters that address data uncertainty, and summarizes major network changes since the inception of CSN.
ImplicationsTwo long-term chemical speciation particle monitoring networks have operated simultaneously in the United States since 2001, when the EPA began regular operations of its PM2.5 Chemical Speciation Monitoring Network (IMPROVE began in 1988). These networks use similar field sampling and analytical methods, but there are numerous, often subtle differences in equipment and methodologies that can affect the results. This paper describes these networks since 2000 (inception of CSN) and their differences, and summarizes the analytical parameters that address data uncertainty, providing researchers and policymakers with background information they may need (e.g., for 2018 PM2.5 designation and State Implementation Plan process; McCarthy, 2013) to assess results from each network and decide how these data sets can be mutually employed for enhanced analyses. Changes in CSN and IMPROVE that have occurred over the years also are described.  相似文献   
907.
Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.  相似文献   
908.
Drought is a significant natural hazard that slowly evolves over time. Because of its character, drought is difficult to monitor and impacts are often poorly documented. Agriculture is one of the most sensitive sectors that are prone to drought. The objective of this research is to assess the impacts of drought on soybean production and revenue in Kentucky. Soybeans are one of Kentucky’s most important commodities. In this study, impacts of 1930–1931, 1940–1942, 1952–1955, 1987–1988, 1999–2000, and 2007 droughts were considered. It was found that over the recent years, up to 56 % of the revenue from soybeans was lost due to drought. During the first half of the twentieth century, revenue loss reached up to 77 %. This research is valuable to the general public as well as planners and policy makers. Proper documentation of impacts of past droughts will help identify drought vulnerabilities and results in better risk management and mitigation.  相似文献   
909.
A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil‐gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert‐butyl ether concentrations have decreased in groundwater. Interpolations of free‐phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on‐site, even in a noncontaminated control area. All four Populus clones survived well at the site. © 2014 Wiley Periodicals, Inc.*  相似文献   
910.
Freshwater ecosystems are important for global biodiversity and provide essential ecosystem services. There is consensus in the scientific literature that freshwater ecosystems are vulnerable to the impacts of environmental change, which may trigger irreversible regime shifts upon which biodiversity and ecosystem services may be lost. There are profound uncertainties regarding the management and assessment of the vulnerability of freshwater ecosystems to environmental change. Quantitative approaches are needed to reduce this uncertainty. We describe available statistical and modeling approaches along with case studies that demonstrate how resilience theory can be applied to aid decision-making in natural resources management. We highlight especially how long-term monitoring efforts combined with ecological theory can provide a novel nexus between ecological impact assessment and management, and the quantification of systemic vulnerability and thus the resilience of ecosystems to environmental change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号