首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10272篇
  免费   19篇
  国内免费   6篇
安全科学   37篇
废物处理   791篇
环保管理   1306篇
综合类   1048篇
基础理论   3244篇
环境理论   2篇
污染及防治   1885篇
评价与监测   1048篇
社会与环境   928篇
灾害及防治   8篇
  2024年   1篇
  2023年   19篇
  2022年   16篇
  2021年   20篇
  2020年   25篇
  2019年   16篇
  2018年   1490篇
  2017年   1395篇
  2016年   1232篇
  2015年   154篇
  2014年   54篇
  2013年   61篇
  2012年   512篇
  2011年   1375篇
  2010年   721篇
  2009年   627篇
  2008年   899篇
  2007年   1256篇
  2006年   27篇
  2005年   42篇
  2004年   48篇
  2003年   74篇
  2002年   109篇
  2001年   22篇
  2000年   16篇
  1999年   7篇
  1998年   19篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1985年   2篇
  1984年   14篇
  1983年   8篇
  1981年   1篇
  1972年   1篇
  1964年   1篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
This study aimed to determine the occurrence, abundance, and fate of nine important antimicrobial resistance genes (ARGs) (sul1, sul2, tetB, tetM, ermB, ermF, fexA, cfr, and Intl1) in the simulated soil and pond microcosms following poultry and swine manure application. Absolute quantitative PCR method was used to determine the gene copies. The results were modeled as a logarithmic regression (N?=?mlnt?+?b) to explore the fate of target genes. Genes sul1, Intl1, sul2, and tetM had the highest abundance following the application of the two manure types. The logarithmic regression model fitted the results well (R 2 values up to 0.99). The reduction rate of all genes (except for the genes fexA and cfr) in manure-pond microcosms was faster than those in manure-soil microcosms. Importantly, sul1, intl1, sul2, and tetM had the lowest reduction rates in all the samples and the low reduction rates of tetM was the first time to be reported. These results indicated that ARG management should focus on using technologies for the ARG elimination before the manure applications rather than waiting for subsequent attenuation in soil or water, particularly the ARGs (such as sul1, intl1, sul2, and tetM investigated in this study) that had high abundance and low reduction rate in the soil and water after application of manure.  相似文献   
942.
Methane (CH4) removal in the presence of ethanol vapors was performed by a stone-based bed and a hybrid packing biofilter in parallel. In the absence of ethanol, a methane removal efficiency of 55 ± 1% was obtained for both biofilters under similar CH4 inlet load (IL) of 13 ± 0.5 gCH4 m?3 h?1 and an empty bed residence time (EBRT) of 6 min. The results proved the key role of the bottom section in both biofilters for simultaneous removal of CH4 and ethanol. Ethanol vapor was completely eliminated in the bottom sections for an ethanol IL variation between 1 and 11 gethanol m?3 h?1. Ethanol absorption and accumulation in the biofilm phase as well as ethanol conversion to CO2 contributed to ethanol removal efficiency of 100%. In the presence of ethanol vapor, CO2 productions in the bottom section increased almost fourfold in both biofilters. The ethanol concentration in the leachate of the biofilter exceeding 2200 gethanol m?3 leachate in both biofilters demonstrated the excess accumulation of ethanol in the biofilm phase. The biofilters responded quickly to an ethanol shock load followed by a starvation with 20% decrease of their performance. The return to normal operations in both biofilters after the transient conditions took less than 5 days. Unlike the hybrid packing biofilter, excess pressure drop (up to 1.9 cmH2O m?1) was an important concern for the stone bed biofilter. The biomass accumulation in the bottom section of the stone bed biofilter contributed to 80% of the total pressure drop. However, the 14-day starvation reduced the pressure drop to 0.25 cmH2O m?1.  相似文献   
943.
The effect of dissolved organic matter (DOM) and oil on the removal of the water-soluble compounds benzene, toluene, ethylbenzene, and xylene isomers (BTEX) by two low-cost biosorbents Macrocystis pyrifera and Ulva expansa) was evaluated. DOM decreased the adsorption capacity of toluene, ethylbenzene, and xylenes of the two biosorbents. In contrast, the removal of benzene increased under the same conditions in single and multi-solute systems: this effect was dominant in U. expansa biomass treatments. In the presence of DOM and oil in solutions, the removal of BTEX notoriously increased, being oil that contributed the most. Solubility and hydrophobicity of pollutants played a key role in the adsorption process. The attractions between BTEX molecules and biosorbents were governed by π–π and hydrophobic interactions. Affinities of biosorbents for BTEX were mainly in the order of X > E > T > B. The Langmuir and Sips equations adjusted the adsorption isotherms for BTEX biosorption in deionized and natural water samples, but in the case of oily systems, the Freundlich equation seemed to have a better fit. The biosorption processes followed a pseudo-second-order rate in all the cases.  相似文献   
944.
In the present study, biosynthesis of gold nanoparticles (AuNPs) by the cells (cells-AuNPs) and cell-free extracts (extracts-AuNPs) of a new fungus Mariannaea sp. HJ was reported. The as-synthesized particles were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The effects of different parameters on AuNP biosynthesis were investigated, and initial gold ion concentration of 2 mM, pH 7, was demonstrated to be suitable for both cells-AuNP and extracts-AuNP syntheses. The cells-AuNPs were of various shapes, including sphere, hexagon, and irregular shapes, with an average size of 37.4 nm, while the extracts-AuNPs were almost spherical and pseudo-spherical with an average size of 11.7 nm. XRD pattern suggested that the crystal structure of both AuNPs was face-centered cubic. FTIR spectra implied that some biomolecules from the fungal cell walls or cell-free extracts were involved in the formation of AuNPs. The as-synthesized AuNPs were demonstrated to have excellent catalytic activities for the reduction of 4-nitrophenol with the catalytic rate constants of 5.7 × 10?3/s for cells-AuNPs and 24.7 × 10?3/s for extracts-AuNPs. To the best of our knowledge, this is the first report on AuNP biosynthesis by Mariannaea sp.  相似文献   
945.
Environmental degradation by industrial and other developmental activities is alarming for imperative environmental management by process advancements of production. Pulp and paper mills are now focusing on using nonwood-based raw materials to protect forest resources. In present study, rice straw was utilized for pulp production as it is easily and abundantly available as well as rich in carbohydrates (cellulose and hemicelluloses). Soda-anthraquinone method was used for pulp production as it is widely accepted for agro residues. Bleaching process during paper production is the chief source of wastewater generation. The chlorophenolic compounds generated during bleaching are highly toxic, mutagenic, and bioaccumulative in nature. The objectives of study were to use oxygen delignification (ODL) stage prior to elemental chlorine-free (ECF) bleaching to reduce wastewater load and to study its impact on bleached pulp characteristics. ODL stage prior to ECF bleaching improved the optical properties of pulp in comparison to only ECF bleaching. When ODL stage was incorporated prior to bleaching, the tensile index and folding endurance of the pulp were found to be 56.6 ± 1.5 Nm/g and 140, respectively, very high in comparison to ECF alone. A potential reduction of 51, 57, 43, and 53% in BOD3, COD, color, and AOX, respectively was observed on adding the ODL stage compared to ECF only. Generation of chlorophenolic compounds was reduced significantly. Incorporation of ODL stage prior to bleaching was found to be highly promising for reducing the toxicity of bleaching effluents and may lead to better management of nearby water resources.
Graphical abstract ?
  相似文献   
946.
As a primary factor responsible for lake eutrophication, a deeper understanding of the phosphorus (P) composition and its turnover in sediment is urgently needed. In this study, P species in surface sediments from a Chinese large eutrophic lake (Lake Taihu) were characterized by traditional fractionation and 31P nuclear magnetic resonance (NMR) spectroscopy, and their contributions to the overlying water were also discussed. Fractionation results show that NaOH-P predominated in the algal-dominated zone, accounting for 60.1% to total P in Zhushan Bay. Whereas, refractory fractions including HCl-P and residual-P were the main P burial phases in the macrophyte-dominated zone, the center and lakeshore. Recovery rates of the total P and organic P were greatly improved by using a modified single-step extraction of NaOH-EDTA, ranging from 22.6 to 66.1% and from 15.0 to 54.0%. Ortho-P, monoester-P, and pyro-P are identified as the major P components in the NaOH-EDTA extracts by 31P NMR analysis. Trace amount of DNA-P appeared only in sediments from algal- and macrophyte-dominated zones, ascribing to its biological origin. The relative content of ortho-P is the highest in the algal-dominated zone, while the biogenic P including ester-P and pyro-P is the highest in the macrophyte-dominated zone. Moreover, ortho-P and pyro-P correlated positively with TP and chlorophyll a in the overlying water, whereas only significant relationships were found between monoester-P, biogenic P, and chlorophyll a. These discrepancies imply that inorganic P, mainly ortho-P, plays a vital role in sustaining the trophic level of water body and algal bloom, while biogenic P makes a minor contribution to phytoplankton growth. This conclusion was supported by the results of high proportion of biogenic P in algae, aquatic macrophytes, and suspended particulate from the published literature. This study has significant implication for better understanding of the biogeochemical cycling of endogenous P and its role in affecting lake eutrophication.  相似文献   
947.
Environmental Science and Pollution Research - This work supports, for the first time, the integrated management of waste materials arising from industrial processes (fly ash from municipal solid...  相似文献   
948.
To better understand the Hg(II) adsorption by some typical soils and explore the insights about the binding between Hg(II) and soils, a batch of adsorption and characteristic experiments was conducted. Results showed that Hg(II) adsorption was well fitted by the Langmuir and Freundlich. The maximum adsorption amount of cinnamon soil (2094.73 mg kg?1) was nearly tenfold as much as that of saline soil (229.49 mg kg?1). The specific adsorption of Hg(II) on four soil surface was confirmed by X-ray photoelectron spectroscopy (XPS) owing to the change of elemental bonding energy after adsorption. However, the specific adsorption is mainly derived from some substances in the soil. Fourier transform infrared spectroscopy (FTIR) demonstrated that multiple oxygen-containing functional groups (O–H, C=O, and C–O) were involved in the Hg(II) adsorption, and the content of oxygen functional groups determined the adsorption capacity of the soil. Meanwhile, scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM–EDS) more intuitive revealed the binding of mercury to organic matter, metal oxides, and clay minerals in the soil and fundamentally confirmed the results of XPS and FTIR to further elucidate adsorptive phenomena. The complexation with oxygen-containing functional groups and the precipitation with minerals were likely the primary mechanisms for Hg(II) adsorption on several typical soils. This study is critical in understanding the transportation of Hg(II) in different soils and discovering potential preventative measures.  相似文献   
949.
The Three Gorges Dam in China is the world’s largest dam. Upon its completion in 2003, the Three Gorges Reservoir (TGR) became the largest reservoir in China and plays an important role in economic development and national drinking water safety. However, as a sink and source of heavy metals, there is a lack of continuous and comparative data on heavy metal pollution in sediments. This study reviewed all available literatures published on heavy metals in TGR sediments and further provided a comprehensive assessment of the pollution tendency of these heavy metals. The results showed that heavy metal concentrations in TGR sediments varied spatially and temporally. Temporal variations indicated that Hg in tributaries, as well as As, Cd, Cr, Cu, Ni, Pb, and Zn in the mainstream, exhibited a higher probability to exceed background values after the impoundment of TGR. Pollution assessments by contamination factor, geoaccumulation index, and potential ecological risk were similar. High Cd and Hg concentrations in both the mainstream and tributaries are a cause for much concern. However, sediment quality guidelines produced different results, as most previous studies adopted different sampling and measurement strategies. The data inconsistencies and lack of continuity regarding the reservoir confirm the need for a continuous monitoring network and the development of quality criteria relevant to the sediments of the TGR in the future.  相似文献   
950.
Discharge of organic waste results in high nutrient pollution of the water bodies which is a major menace to the environment. A high quantity of nutrients such as ammonia causes a reduction in the dissolved oxygen level and induces algal growth in the water bodies. Water quality models have been the tools to evaluate the rate at which streams can disperse the pollutants they receive. Many water quality models are flawed either because of their inadequacy to completely simulate the advection component of the pollutant transport, or because of the limited application of the models, due to inaccurate estimation of model parameters. The hybrid cell in series (HCIS) developed by Ghosh et al. (2004) has been able to overcome such difficulties associated with the mixing cell-based models. Thus, the current study focuses on developing an analytical solution for the pollutant transport of the ammonia concentration through the plug flow, the first and second well-mixed cells of the HCIS model. The HCIS model coupled with the first order kinetic equation for ammonia nutrient was developed to simulate the ammonia pollutant concentration in the water column. The ammonia concentration at various points along the river system was assessed by considering the effects of the transformation of ammonia to nitrite, the uptake of ammonia by the algae, the respiration rate of the algae and the input of benthic source to the ammonia concentration in the water column. The proposed model was tested using synthetic data, and the HCIS-NH3 model simulations for spatial and temporal variation of ammonia pollutant transport were analysed. The simulated results of the HCIS-NH3 model agreed with the Fickian-based advection-dispersion equation (ADE) for simulating ammonia concentration solved using an explicit finite difference scheme. The HCIS-NH3 model also showed a good agreement with the observed data from the Umgeni River, except during rainy periods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号