首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   813篇
  免费   11篇
  国内免费   5篇
安全科学   36篇
废物处理   32篇
环保管理   141篇
综合类   134篇
基础理论   178篇
环境理论   2篇
污染及防治   208篇
评价与监测   50篇
社会与环境   38篇
灾害及防治   10篇
  2024年   16篇
  2023年   30篇
  2022年   19篇
  2021年   24篇
  2020年   35篇
  2019年   24篇
  2018年   29篇
  2017年   35篇
  2016年   50篇
  2015年   35篇
  2014年   44篇
  2013年   66篇
  2012年   56篇
  2011年   54篇
  2010年   37篇
  2009年   41篇
  2008年   28篇
  2007年   37篇
  2006年   31篇
  2005年   23篇
  2004年   16篇
  2003年   13篇
  2002年   14篇
  2001年   9篇
  2000年   6篇
  1999年   5篇
  1998年   10篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1981年   1篇
  1972年   1篇
  1964年   1篇
排序方式: 共有829条查询结果,搜索用时 15 毫秒
361.
Successful applications of different analytical procedures to determine quantitatively endosulfan and its metabolites in aqueous media can be found in recent literature. Fundamentally, they have made use of solid-phase extraction (SPE) and gas (GC) or liquid chromatography (LC), sometimes coupled to mass spectrometry (MS). In this paper, a new and alternative methodology to determine quantitatively endosulfan in aqueous media is reported. A C18-modified carbon-paste electrode has been used to determine voltammetrically endosulfan, despite its unfavourable electrochemical properties and behaviour. The methodology proposed is based on the decrease experienced by the peak intensity corresponding to voltammetric signals of Cu(II) when successive and constant additions of endosulfan are carried out. This decrease is directly proportional to the concentration of endosulfan what allows to perform an indirect quantification of the pesticide. The detection limit obtained is 40 ng l−1, this value being under the limits specified by European norms and EPA reports.  相似文献   
362.
Verge C  Moreno A  Bravo J  Berna JL 《Chemosphere》2001,44(8):1749-1757
In the present work, the influence of Ca2+ concentration on the toxicity of single cut linear alkylbenzene sulfonate (LAS) homologues was studied. Precipitation boundary diagrams for each homologue were obtained, indicating turbid and clear zones depending on the LAS and Ca2+ concentrations. The separation between transparent and turbid zones is given by the so-called precipitation line. LAS toxicity to Daphnia magna was determined at concentrations close to this precipitation line. It was observed that when Ca(LAS)2 precipitation progresses, LAS bioavailability decreases for test animals, and the toxicity diminishes even at high nominal LAS concentrations. According to the “free ion activity model” (FIAM), the toxicity of a given chemical compound is mainly due to the ionic species (Ca2+–LAS) and not due to the precipitated molecule, Ca(LAS)2. The significance of the present study is in connection with the assessment of LAS sorption/precipitation studies in soils and sediments, where in situ toxicity is strongly influenced by Ca2+/Mg2+ ions, according to the results presented in this work.  相似文献   
363.

Background, aim and scope  

Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments.  相似文献   
364.
Organic vapors are emitted to the indoor air from a variety of consumer products and building materials. The U.S. EPA Is evaluating the emission characteristics from such sources using small environmental test chambers. Emission rate data are presented, and the effect of temperature and air exchange rate are discussed. Models are used to account for the Impact of chamber concentration and “wall effects” on emission rates. Indoor concentrations of specific organlcs emitted from a silicone caulk are estimated from the chamber test data.  相似文献   
365.
The influence of different fractions of soil organic matter on the retention of the herbicide isoproturon (IPU) has been evaluated. Water and methanol extractable residues of 14C labeled isoproturon have been determined in two Moroccan soils by β -counting–liquid chromatography. The quantification of bound residues in soil and in different fractions of soil humic substances has been performed using pyrolysis/scintillation-detected gas-chromatography. Microbial mineralization of the herbicide and soil organic matter has been also monitored. Retention of isoproturon residues after 30-days incubation ranged from 22% to 32% (non-extractable fraction). The radioactivity extracted in an aqueous environment was from 20% to 33% of the amount used for the treatment; meanwhile, methanol was able to extract another 48%. Both soils showed quantities of bound residues into the humin fraction higher than humic and fulvic acids. The total amount of residues retained into the organic matter of the soils was about 65 % of non-extractable fraction, and this percentage did not change with incubation time; on the contrary, the sorption rate of the retention reaction is mostly influenced by the clay fraction and organic content of the soil. Only a little part of the herbicide was mineralized during the experimental time.  相似文献   
366.
Environmental Science and Pollution Research - The European Interreg Italy–France 2014–2020 Maritime Project SPlasH! (Stop to Plastics in H2O!) focused on the study of microplastics...  相似文献   
367.

Background, aim and scope

Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments.

Results and discussion

Sediment texture was uniform in the cores from both reservoirs. Laminated sediment structure, without any obvious discontinuities, was observed. Hg concentrations in the sediment core from the Valcea Reservoir were low and constant (0.01–0.08 mg/kg). In Babeni Reservoir sediments, Hg concentrations were very high in the deeper core section (up to 45 mg/kg in the longest core) and decreased to lower concentrations toward the top of the cores (1.3–2.4 mg/kg). This decrease probably reflects technological progress in control of emissions from the Hg-cell-based chlor-alkali industry. Two strong peaks could be distinguished in older sediments. The mean rate of sedimentation (5.9 cm/year) was calculated from the depth of the 137Cs Chernobyl peak. This was in good agreement with the sedimentation rate estimated at this site from a bathymetric study. Assuming a constant sedimentation rate, the two Hg peaks would reflect two contamination events in 1987 and 1991, respectively. However, it is also possible that the two peaks belong to the same contamination event in 1987 but were separated by a sediment layer richer in sand and silt. This layer had a low Hg concentration, which can be interpreted as a mass deposition event related to a major flood bringing Hg-free sediments.

Conclusions

Whilst the chlor-alkali plant partly switched to a cleaner technology in 1999, no obvious decrease of Hg concentrations was observed in recent decade. Results from the sediment core reflected the historical trend of Hg release from the chlor-alkali plant, revealed important contamination episodes and confirmed a legacy of contamination of Hg in recent sediments even if the concentrations of Hg decreased toward the surface due to a more efficient emission control.

Recommendations and perspectives

Although the Hg concentrations in Babeni Reservoir sediments were extremely high in the late eighties and they remain one order of magnitude higher in the surface sediments than in sediments from the upstream reservoir, little is known about the transfer of Hg to the biota and human population. Our initial measurements indicate the presence of monomethyl-Hg (MMHg) in pore water, but further studies are necessary to evaluate fluxes of MMHg at the sediment–water interface. Samples of fish and hair from various groups of the local population were recently collected to evaluate the potential hazard of Hg contamination to human health in the Rm Valcea region.
  相似文献   
368.
Polluted soils can present a significant health risk especially in an urban environment. Most current legislation and health risk frameworks are based on pseudototal metal content. However, only a fraction of these concentrations is available for plant and human uptake. The aim of this work was to study the diffuse metal contamination in the soils of a municipality in Northern Italy in terms of: (i) metal availability, and (ii) metal accessibility to the human body and its relationship to soil properties, considering lead, copper, zinc, nickel, and chromium. Soil metal content was measured simulating availability conditions. Human bioaccessibility was derived from a modified physiologically-based extraction test. The human bioaccessible content was then estimated taking into account the relationships between pseudototal content and selected soil parameters. For the case study, the prediction of human bioaccessibility based on pseudototal content, organic matter and soil texture produced statistically significant models, with r2 = 0.60 for Cu, r2 = 0.53 for Pb and r2 = 0.42 for Zn.  相似文献   
369.
Background, aim, and scope  The adverse environmental impacts of chlorinated hydrocarbons on the Earth’s ozone layer have focused attention on the effort to replace these compounds by nonchlorinated substitutes with environmental acceptability. Hydrofluoroethers (HFEs) and fluorinated alcohols are currently being introduced in many applications for this purpose. Nevertheless, the presence of a great number of C–F bonds drives to atmospheric long-lived compounds with infrared absorption features. Thus, it is necessary to improve our knowledge about lifetimes and global warming potentials (GWP) for these compounds in order to get a complete evaluation of their environmental impact. Tropospheric degradation is expected to be initiated mainly by OH reactions in the gas phase. Nevertheless, Cl atoms reaction may also be important since rate constants are generally larger than those of OH. In the present work, we report the results obtained in the study of the reactions of Cl radicals with HFE-7000 (CF3CF2CF2OCH3) (1) and its isomer CF3CF2CF2CH2OH (2). Materials and methods  Kinetic rate coefficients with Cl atoms have been measured using the discharge flow tube–mass spectrometric technique at 1 Torr of total pressure. The reactions of these chlorofluorocarbons (CFCs) substitutes have been studied under pseudo-first-order kinetic conditions in excess of the fluorinated compounds over Cl atoms. The temperature ranges were 266–333 and 298–353 K for reactions of HFE-7000 and CF3CF2CF2CH2OH, respectively. Results  The measured room temperature rate constants were k(Cl+CF3CF2CF2OCH3) = (1.24 ± 0.28) × 10−13 cm3 molecule−1 s−1and k(Cl+CF3CF2CF2CH2OH) = (8.35 ± 1.63) × 10−13 cm3 molecule−1 s−1 (errors are 2σ + 10% to cover systematic errors). The Arrhenius expression for reaction 1 was k 1(266–333 K) = (6.1 ± 3.8) × 10−13exp[−(445 ± 186)/T] cm3 molecule−1 s−1 and k 2(298–353 K) = (1.9 ± 0.7) × 10−12exp[−(244 ± 125)/T] cm3 molecule−1 s−1 (errors are 2σ). The reactions are reported to proceed through the abstraction of an H atom to form HCl and the corresponding halo-alkyl radical. At 298 K and 1 Torr, yields on HCl of 0.95 ± 0.38 and 0.97 ± 0.16 (errors are 2σ) were obtained for CF3CF2CF2OCH3 and CF3CF2CF2CH2OH, respectively. Discussion  The obtained kinetic rate constants are related to the previous data in the literature, showing a good agreement taking into account the error limits. Comparing the obtained results at room temperature, k 1 and k 2, HFE-7000 is significantly less reactive than its isomer C3F7CH2OH. A similar behavior has been reported for the reactions of other fluorinated alcohols and their isomeric fluorinated ethers with Cl atoms. Literature data, together with the results reported in this work, show that, for both fluorinated ethers and alcohols, the kinetic rate constant may be considered as not dependent on the number of –CF2– in the perfluorinated chain. This result may be useful since it is possible to obtain the required physicochemical properties for a given application by changing the number of –CF2– without changes in the atmospheric reactivity. Furthermore, lifetimes estimations for these CFCs substitutes are calculated and discussed. The average estimated Cl lifetimes are 256 and 38 years for HFE-7000 and C3H7CH2OH, respectively. Conclusions  The studied CFCs’ substitutes are relatively short-lived and OH reaction constitutes their main reactive sink. The average contribution of Cl reactions to global lifetime is about 2% in both cases. Nevertheless, under local conditions as in the marine boundary layer, τ Cl values as low as 2.5 and 0.4 years for HFE-7000 and C3H7CH2OH, respectively, are expected, showing that the contribution of Cl to the atmospheric degradation of these CFCs substitutes under such conditions may constitute a relevant sink. In the case of CF3CF2CF2OCH3, significant activation energy has been measured, thus the use of kinetic rate coefficient only at room temperature would result in underestimations of lifetimes and GWPs. Recommendations and perspectives  The results obtained in this work may be helpful within the database used in the modeling studies of coastal areas. The knowledge of the atmospheric behavior and the structure–reactivity relationship discussed in this work may also contribute to the development of new environmentally acceptable chemicals. New volatile materials susceptible of emission to the troposphere should be subject to the study of their reactions with OH and Cl in the range of temperature of the troposphere. The knowledge of the temperature dependence of the kinetic rate constants, as it is now reported for the case of reactions 1 and 2, will allow more accurate lifetimes and related magnitudes like GWPs. Nevertheless, a better knowledge of the vertical Cl tropospheric distribution is still required.  相似文献   
370.
Goal, Scope and Background Within the non-methane hydrocarbons, alkanes constitute the largest fraction of the anthropogenic emissions of volatile organic compounds. For the case of cyclic alkanes, tropospheric degradation is expected to be initiated mainly by OH reactions in the gas phase. Nevertheless, Cl atom reaction rate constants are generally one order of magnitude larger than those of OH. In the present work, the reaction of cyclooctane with Cl atoms has been studied within the temperature range of 279–333 K. Methods The kinetic study has been carried out using the fast flow tube technique coupled to mass spectrometry detection. The reaction has been studied under low pressure conditions, p=1 Torr, with helium as the carrier gas. Results The measured room temperature rate constant is very high, k=(2.63±0.54)×10−10 cm3molecule−1s−1, around 20 times larger than that for the corresponding OH reaction. We also report the results of the rate coefficients obtained at different temperatures: k = (3.5±1.2)×10−10 exp[(−79±110)/T] cm3 molecule−1 s−1 within the range of 279–333 K. This reaction shows an activation energy value close to zero. Discussion Quantitative formation of HCl has been observed, confirming the mechanism through H-atom abstraction. The reactivity of cyclic alkanes towards Cl atoms is clearly dependent on the number of CH2 groups in the molecule, as is shown by the increase in the rate constant when the length of the organic chain increases. This increase is very high for the small cyclic alkanes and it seems that the reactions are approaching the collision-controlled limit for cyclohexane and cyclooctane. Conclusions These results show that gas-phase reaction with Cl in marine or coastal areas is an efficient sink (competing with the gas phase, OH initiated degradation) for the Earth’s emissions of cyclooctane, with a Cl-based lifetime ranging from 11 to 2000 hours, depending on the location and time of day. Recommendations and Perspectives Cl and OH fast reactions with cyclooctane are expected to define the lifetime of cyclooctane emissions to the atmosphere. The degradation of cyclooctane occurs in a short period of time and consequently (under conditions of low atmospheric mass transport), close to the emission sources enabling a significant contribution to local effects, like the formation of photochemical smog. ESS-Submission Editor: Prof. Dr. Gerhard Lammel (lammel@recetox.muni.cz)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号