首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   826篇
  免费   19篇
  国内免费   8篇
安全科学   38篇
废物处理   36篇
环保管理   140篇
综合类   132篇
基础理论   193篇
环境理论   2篇
污染及防治   208篇
评价与监测   54篇
社会与环境   41篇
灾害及防治   9篇
  2023年   21篇
  2022年   18篇
  2021年   21篇
  2020年   26篇
  2019年   17篇
  2018年   29篇
  2017年   34篇
  2016年   47篇
  2015年   32篇
  2014年   42篇
  2013年   65篇
  2012年   57篇
  2011年   55篇
  2010年   37篇
  2009年   37篇
  2008年   27篇
  2007年   37篇
  2006年   34篇
  2005年   26篇
  2004年   17篇
  2003年   16篇
  2002年   16篇
  2001年   10篇
  2000年   8篇
  1999年   8篇
  1998年   10篇
  1997年   4篇
  1996年   9篇
  1995年   9篇
  1994年   8篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1988年   6篇
  1987年   11篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1981年   4篇
  1980年   2篇
  1978年   2篇
  1976年   1篇
  1975年   6篇
  1972年   2篇
  1971年   2篇
  1969年   3篇
  1967年   2篇
  1964年   1篇
排序方式: 共有853条查询结果,搜索用时 15 毫秒
51.
Lichens are an excellent model to study the bioaccumulation of heavy metals but limited information is available on the molecular mechanisms occurring during bioaccumulation. We investigated the changes of the lichen proteome during exposure to constant concentrations of mercury. We found that most of changes involves proteins of the photosynthetic pathway, such as the chloroplastic photosystem I reaction center subunit II, the oxygen-evolving protein and the chloroplastic ATP synthase β-subunit. This suggests that photosynthesis is a target of the toxic effects of mercury. These findings are also supported by changes in the content of photosynthetic pigments (chlorophyll a and b, and β-carotene). Alterations to the photosynthetic machinery also reflect on the structure of thylakoid membranes of algal cells. Response of lichens to mercury also involves stress-related proteins (such as Hsp70) but not cytoskeletal proteins. Results suggest that lichens adapt to mercury exposure by changing the metabolic production of energy.  相似文献   
52.
Riparian areas link aquatic and terrestrial habitats, supporting species-rich bird communities, which integrate both terrestrial and aquatic processes. For this reason, inclusion of riparian birds in stream bioassessment could add to the information currently provided by existing programs that monitor aquatic organisms. To assess if bird community metrics could indicate stream conditions, we sampled breeding birds in the riparian zone of 37 reaches in 5 streams draining watersheds representing a gradient of agricultural intensity in central Italy. As a more direct indicator of water quality, stream macroinvertebrates were also sampled for computation of the Italian Extended Biotic Index (IBE). An anthropogenic index was calculated within 1 km of sampled reaches based on satellite-derived land-use classifications. Predictive models of macroinvertebrate integrity based on land-use and avian metrics were compared using an information-theoretic approach (AIC). We also determined if stream quality related to the detection of riverine species. Apparent bird species diversity and richness peaked at intermediate levels of land-use modification, but increased with IBE values. Water quality did not relate to the detection of riverine species as a guild, but two species, the dipper Cinclus cinclus and the grey wagtail Motacilla cinerea, were only observed in reaches with the highest IBE values. Small-bodied insectivorous birds and arboreal species were detected more often in reaches with better water quality and in less modified landscapes. In contrast, larger and granivorous species were more common in disturbed reaches. According to the information-theoretic approach, the best model for predicting water quality included the anthropogenic index, bird species diversity, and an index summarizing the trophic structure of the bird community. We conclude that, in combination with landscape-level information, the diversity and trophic structure of riparian bird communities could serve as a rapid indicator of stream-dwelling macroinvertebrates and, therefore, degradation of in-stream biotic integrity.  相似文献   
53.
Eero Asmala  Laura Saikku 《Ambio》2010,39(2):126-135
Ongoing eutrophication is changing the Baltic Sea ecosystem. Aquaculture causes relatively small-scale nutrient emissions, but local environmental impact may be considerable. We used substance flow analysis (SFA) to identify and quantify the most significant flows and stocks of nitrogen (N) and phosphorus (P) related to rainbow trout aquaculture in Finland. In 2004–2007, the input of nutrients to the system in the form of fish feed was 829 t N year−1 and 115 t P year−1. Around one-fifth of these nutrients ended up as food for human consumption. Of the primary input, 70% ended up in the Baltic Sea, directly from aquaculture and indirectly through waste management. The nutrient cycle could be closed partially by using local fish instead of imported fish in rainbow trout feed, thus reducing the net load of N and P to a fraction.  相似文献   
54.
A method, based on spatial analysis of the different criteria to be taken into consideration for building scenarios of CO2 capture and storage (CCS), has been developed and applied to real case studies in the Hebei province. Totally 88 point sources (42 from power sector, 9 from iron and steel, 18 from cement, 16 from ammonia, and 3 from oil refinery) are estimated and their total emission amounts to 231.7 MtCO2/year with power, iron and steel, cement, ammonia and oil refinery sharing 59.13%, 25.03%, 11.44%, 3.5%, and 0.91%, respectively. Storage opportunities can be found in Hebei province, characterised by a strong tectonic subsidence during the Tertiary, with several kilometres of accumulated clastic sediments. Carbon storage potential for 25 hydrocarbon fields selected from the Huabei complex is estimated as 215 MtCO2 with optimistic assumption that all recovered hydrocarbon could be replaced by an equivalent volume of CO2 at reservoir conditions. Storage potential for aquifers in the Miocene Guantao formation is estimated as 747 MtCO2 if closed aquifer assumed or 371 MtCO2 if open aquifer and single highly permeable horizon assumed. Due to poor knowledge on deep hydrogeology and to pressure increase in aquifer, injecting very high rates requested by the major CO2 sources (>10 MtCO2/year) is the main challenge, therefore piezometry and discharge must be carefully controlled. A source sink matching model using ArcGIS software is designed to find the least-cost pathway and to estimate transport route and cost accounting for the additional costs of pipeline construction due to landform and land use. Source sink matching results show that only 15–25% of the emissions estimated for the 88 sources can be sequestrated into the hydrocarbon fields and the aquifers if assuming sinks should be able to accommodate at least 15 years of the emissions of a given source.  相似文献   
55.
Southern Chile encompasses one of the most extensive fjord regions of the world, the Patagonia, currently exposed to natural and anthropogenic perturbations. These fjord ecosystems provide important services to humans, which have not been adequately measured and valued. As a consequence, ecosystem services are commonly ignored in public policy design and in the evaluation of development projects. Here we tackle questions that are highly relevant for the nation’s development, namely (1) understanding fjord functioning, and (2) developing management strategies based on ecosystem services, in order to secure simultaneous and adequate use of these ecosystems which area influenced by ecological (e.g., biogeochemical) and productive (e.g., aquaculture, fisheries) processes. We also seek to strengthen the analysis of fjord ecosystem value from the economical (including coastal zoning), socio-cultural, institutional, and governmental points of view. In addition, the investigation of current and future effects of climate change on this large region offers a unique opportunity to understand the social and economic consequences of a global phenomenon at local to regional scales. Biogeochemical and socio-economic models will be used to simulate future scenarios under a gamut of management options.  相似文献   
56.
Phosphor imager autoradiography is a technique for rapid, sensitive analysis of the localization of xenobiotics in plant tissues. Use of this technique is relatively new to research in the field of plant science, and the potential for enhancing visualization and understanding of plant uptake and transport of xenobiotics remains largely untapped. Phosphor imager autoradiography is used to investigate the uptake and translocation of the explosives 1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene within Populus deltoides × nigra DN34 (poplar) and Panicum vigratum Alamo (switchgrass). In both plant types, TNT and/or TNT-metabolites remain predominantly in root tissues while RDX and/or RDX-metabolites are readily translocated to leaf tissues. Phosphor imager autoradiography is further investigated for use in semi-quantitative analysis of uptake of TNT by switchgrass.  相似文献   
57.
A new annual bottom–up emission inventory of criteria pollutants and greenhouse gases from on-road mobile sources was developed for 2006 for the metropolitan area of Buenos Aires, Argentina, within a four-year regional project aimed at providing tools for chemical weather forecast in South America. Under the scarcity of local emission factors, we collected data from measuring campaigns performed in Argentina, Brazil, Chile and Colombia and compiled a data set of regional emission factors representative of Latin American fleets and driving conditions. The estimated emissions were validated with respect to downscaled national estimates and the EDGAR global emission database. Our results highlight the role of older technologies accounting in average for almost 80% of the emissions of all species. The area exhibits higher specific emissions than developed countries, with figures two times higher for criteria pollutants. We analyzed the effect on emissions of replacing gasoline by compressed natural gas, occurring in Argentina since 1995. We identified (i) a relationship between number of vehicles and a compound socioeconomic indicator, and (ii) time-lags in vehicle technologies between developed and developing countries, which can be respectively applied for spatial disaggregation and the development of projections for other Latin American cities. The results may also be employed to complement global emission inventories and by local policy makers as an environmental management tool.  相似文献   
58.
This work describes the development of an urban vehicle emissions inventory for South America, based on the analysis and aggregation of available inventories for major cities, with emphasis on its application in regional atmospheric chemistry modeling. Due to the limited number of available local inventories, urban emissions were extrapolated based on the correlation between city vehicle density and mobile source emissions of carbon monoxide (CO) and nitrogen oxides (NOx). Emissions were geographically distributed using a methodology that delimits urban areas using high spatial resolution remote sensing products. This numerical algorithm enabled a more precise representation of urban centers. The derived regional inventory was evaluated by analyzing the performance of a chemical weather forecast model in relation to observations of CO, NOx and O3 in two different urban areas, São Paulo and Belo Horizonte. The gas mixing ratios simulated using the proposed regional inventory show good agreement with observations, consistently representing their hourly and daily variability. These results show that the integration of municipal inventories in a regional emissions map and their precise distribution in fine scale resolutions are important tools in regional atmospheric chemistry modeling.  相似文献   
59.
60.
Land capability classification systems define and communicate biophysical limitations on land use, including climate, soils and topography. They can therefore provide an accessible format for both scientists and decision-makers to share knowledge on climate change impacts and adaptation. Underlying such classifications are complex interactions that require dynamic spatial analysis, particularly between soil and climate. These relationships are investigated using a case study on drought risk for agriculture in Scotland, which is currently considered less significant than wetness-related issues. The impact of drought risk is assessed using an established empirical system for land capability linking indicator crops with water availability. This procedure is facilitated by spatial interpolation of climate and soil profile data to provide soil moisture deficits and plant available water on a regular 1-km grid. To evaluate potential impacts of future climate change, land capability classes are estimated using both large-scale ensemble (multi-simulation) data from the HadRM3 regional climate model and local-scale weather generator data (UKCP09) derived from multiple climate models. Results for the case study suggest that drought risk is likely to have a much more significant influence on land use in the future. This could potentially act to restrict the range of crops grown and hence reduce land capability in some areas unless strategic-level adaptation measures are developed that also integrate land use systems and water resources with the wider environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号