首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9837篇
  免费   5篇
  国内免费   4篇
安全科学   12篇
废物处理   778篇
环保管理   1215篇
综合类   1005篇
基础理论   3148篇
污染及防治   1770篇
评价与监测   1018篇
社会与环境   899篇
灾害及防治   1篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   11篇
  2019年   6篇
  2018年   1479篇
  2017年   1376篇
  2016年   1200篇
  2015年   138篇
  2014年   24篇
  2013年   21篇
  2012年   473篇
  2011年   1349篇
  2010年   700篇
  2009年   604篇
  2008年   887篇
  2007年   1239篇
  2006年   14篇
  2005年   27篇
  2004年   39篇
  2003年   72篇
  2002年   104篇
  2001年   16篇
  2000年   10篇
  1999年   6篇
  1998年   12篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1984年   11篇
  1983年   8篇
  1978年   1篇
  1935年   2篇
排序方式: 共有9846条查询结果,搜索用时 31 毫秒
201.
Goals, Scope and Background It has been observed that hydrocarbon treated wastewaters still contain high COD and a number of intermediates. This suggests that the required catabolic gene pool for further degradation might be absent in the system or, that its titer value is not significant enough. By providing the desired catabolic potential, the overall efficiency of the treatment system can be improved. This study aims to demonstrate this concept by bioaugmentation of a lab-scale reactor treating refinery wastewater with a consortium having the capacity to complement the alkB genotype to the available microbial population. Methods Two reactors were set up using activated biomass collected from a refinery treatment plant and operated at a continuous mode for a period of 8 weeks. The feed to both reactors was kept constant. Crude oil was spiked regularly. One reactor was bioaugmented with a consortium previously described for crude oil spill remediation. The efficiency of the bioaugmented reactor was demonstrated by reduced COD. The changes in the microbial population over a period of time were analyzed by RAPD. Catabolic activity of the biomass in both reactors was monitored by PCR. The presence of the catabolic loci was confirmed by Southern Hybridization. Results and Discussion 52.2% removal of COD was observed in the bioaugmented reactor while only 15.1% reduction of COD was observed in the reactor without bioaugmentation. The change in microbial population can be seen from the 4th week, which also corresponds to improved catabolic activity. The presence of the bedA locus was seen in all samples, which indicates the presence of aromatic degraders, but the appearance of the alkB locus, from the 6th week onwards, which was observed only in the samples from the bioaugmented reactor. The results suggest that the gene pool of the bioaugmented reactor has catabolic loci that can degrade accumulated intermediates, thus improving the efficiency of the system. Conclusions In this study, improvement of efficiency of bioremediation was demonstrated by addition of catabolic loci that are responsible for degradation. Bioaugmentation was carried out in biomass that was collected from an ETP (effluent treatment plant) treating hydrocarbon containing wastewater to study the strategies for improvement of the treatment system. Biostimulation, only marginally improved the efficiency, when compared to bioaugmentation. The improved efficiency was demonstrated by COD removal. The presence of the alkB locus suggests the importance of a catabolic gene pool that acts on accumulated intermediates. It is well documented that straight chain aliphatics and intermediates of aromatic compounds after ring cleavage, accumulate in refinery wastewater systems, thereby hindering further degradation of the wastewater. Supplementation of a catabolic gene pool that treats the lower pathway compounds and alkanes will improve the overall efficiency. In this study, results suggest that the alkB locus can also be used to monitor the degradative mode of the activated biomass. Recommendations and Perspective . Pollution from petroleum and petroleum products around the globe are known to have grave consequences on the environment. Bioremediation, using activated sludge, is one option for the treatment of such wastes. Effluent treatment plants are usually unable to completely degrade the wastewater being treated in the biological unit (the aerator chambers). The efficiency of degradation can be improved by biostimulation and bioaugmentation. This study demonstrates the improved efficiency of a treatment system for wastewater containing hydrocarbons by bioaugmentation of a consortium that supports degradation. Further experiments on a pilot scale are recommended to assess the use of bioaugmentation on a large scale. The use of molecular tools, like DNA probes for alkB, to monitor the system also needs to be explored.  相似文献   
202.
203.

Background, Aim and Scope

The presence of heavy metals in wastewater is one of the main causes of water and soil pollution. The aim of the present study was to investigate the removal of Cd, Cu, Pb, Hg, Mn, Cr and Zn in urban effluent by a biological wastewater treatment, as well as to quantify the levels of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sn, Tl, V and Zn in dewatering sludge from the Biological Wastewater Treatment Plant to Ribeirão Preto (RP-BWTP), Brazil.

Materials and Methods

Concentrations of Cd, Cr, Cu, Mn and Pb in wastewater and those of Ni in sludge were determined by atomic absorption spectrophotometry with graphite furnace atomization. Mercury concentrations in wastewater were measured by hydride generation atomic spectrophotometry, and Zn levels were determined by atomic absorption spectrophotometry using acetylene flame. In sludge, the levels of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Sn, Tl, V and Zn were determined by inductively coupled plasma-mass spectrometry.

Results

The percentages of removal efficiency (RE) were the following: Hg 61.5%, Cd 60.0%, Zn 44.9%, Cu 44.2%, PB 39.7%, Cr 16,5% and Mn 10.4%. In turn, the mean concentrations (mg/kg) of metals in dewatering sludge followed this increasing order: Tl (<0.03), Hg (0.31), Be (0.43), As (1.14), Cd (1.34), V (59.2), Pb (132.1), Sn (166.1), Cr (195.0), Mn (208.1), Ni (239.4), Cu (391.7), Zn (864.4) and Fe (20537).

Discussion

The relationship between metal levels in untreated wastewater, as well as the removal efficiency are in agreement with previous data from various investigators, It is important to note that metal removal efficiency is not only affected by metal ion species and concentration, but also by other conditions such as operating parameters, physical, chemical, and biological factors.

Conclusions

Metal values recorded for treated wastewater and sludge were within the maximum permitted levels established by the Environmental Sanitation Company (CETESB), São Paulo, Brazil.

Recommendations

There is an urgent need for the authorities who are responsible for legislation on sludge uses in agriculture of establishing safety levels for As, Be, Hg, Sn, Tl and V.

Perspectives

According to the current metal levels, RP-BWTP sludge might be used for agriculture purposes. However, for an environmentally safe use of sewage sludge, further studies including systematic monitoring are recommended. Annual metal concentrations and predicted variations of those elements in the sludge should be monitored.
  相似文献   
204.
Humans’ superiority over all other organisms on earth rests on five main foundations: command of fire requiring fuel; controlled production of food and other biotic substances; utilization of metals and other non-living materials for construction and appliances; technically determined, urban-oriented living standard; economically and culturally regulated societal organization. The young discipline of ecology has revealed that the progress of civilization and technology attained, and being further pursued by humankind, and generally taken for granted and permanent, is leading into ecological traps. This metaphor circumscribes ecological situations where finite resources are being exhausted or rendered non-utilizable without a realistic prospect of restitution. Energy, food and land are the principal, closely interrelated traps; but the absolutely decisive resource in question is land whose increasing scarcity is totally underrated. Land is needed for fulfilling growing food demands, for producing renewable energy in the post-fossil and post-nuclear era, for maintaining other ecosystem services, for urban-industrial uses, transport, material extraction, refuse deposition, but also for leisure, recreation, and nature conservation. All these needs compete for land, food and non-food biomass production moreover for good soils that are scarcer than ever. We are preoccupied with fighting climate change and loss of biodiversity; but these are minor problems we could adapt to, albeit painfully, and their solution will fail if we are caught in the interrelated traps of energy, food, and land scarcity. Land and soils, finite and irreproducible resources, are the key issues we have to devote our work to, based on careful ecological information, planning and design for proper uses and purposes. The article concludes with a short reflection on economy and competition as general driving forces, and on the role and reputation of today’s ecology. Updated version of the keynote lecture presented at the EcoSummit 2007 in Beijing, China, May 24. The article is gratefully dedicated to the memory of my late colleague and friend Frank B. Golley.  相似文献   
205.
Samples of effluents, sludge, pulp, final products (paper) and soil were collected from the identified pulp and paper mills in India. The samples were analysed for 2,3,7,8-tetrachloro-dibenzo-p-dioxin (2,3,7,8-TCDD) and other dioxin congeners and precursors. Pulp and paper mills using chlorine for the bleaching process showed the presence of 2,3,7,8-TCDD in effluent samples. In the effluent and pulp samples from mills where chlorine dioxide was used as a bleaching agent, the 2,3,7,8-TCDD congener ranged from below the detection limit 0.05 to 0.12 ngL−1/ngg−1. The relative standard deviation of reproducibility and the percent recovery of 2,3,7,8-TCDD were 2.07 and 82.4% in pulp and 2.8 and 92% in effluent, respectively. The 1,3,6,8-TCDD was the only other major dioxin congener found in the treated and untreated effluent and sludge samples. However, dichlorobenzene, trichlorophenyl, and hexachlorobiphenyl were detected in all samples. The formation of dioxins can be minimised by replacing chlorine with chlorine dioxide in bleaching processes in pulp and paper mills.  相似文献   
206.
Phytoremediation is an emerging strategy to remediate soils contaminated with pollutants like explosives in which plants will uptake, degrade and/or accumulate pollutants. To implement this technology on a site contaminated with RDX, we chose rice, which is able to grow in lagoons, and we tested its ability to grow in soils with high levels of RDX and to decrease RDX concentrations in soil. Rice was grown for 40 days in soil contaminated with increasing [14C]RDX concentrations. Emergence and growth were not affected by RDX. Total chlorophyll content decreased with RDX concentrations of over 500 mg kg(-1). Amounts of chlorophyll were correlated with the appearance of necrosis in leaf extremities. After 40 days, rice translocated 89% of uptaken radioactivity to leaves with 90% in leaf extremities. Analyzes of leaf extracts showed that 95% of radioactivity was RDX in its parent form. Necrosis appears to be a phytotoxic symptom of RDX accumulation.  相似文献   
207.
Summary. The stems of many Macaranga ant-plants (Euphorbiaceae) are covered by epicuticular wax crystals rendering the surface very slippery for most insects. These wax blooms act as selective barriers protecting the symbiotic ant partners, which are specialized “wax-runners”, against the competition of other ants. Glaucous stems occur almost exclusively among the ant-plants of the genus Macaranga (). We analyzed the cuticular lipids of 16 Macaranga species by GC-MS and investigated the wax crystal morphology using SEM. Presence of crystalline wax blooms was strongly correlated with high concentrations (52%–88%) of triterpenoids. In contrast epicuticular waxes of glossy Macaranga surfaces contained only 0% to 36% of these dominant components. Therefore we conclude that triterpenoids are responsible for the formation of the thread-like Macaranga wax crystals. In all Macaranga ant-plants investigated, the principal components were epitaraxerol and taraxerone accompanied by smaller portions of taraxerol, β-amyrin and friedelin. Only in the case of the non-myrmecophytic M. tanarius did β-amyrin predominate. Moreover, we found that only in M. tanarius, the dense wax crystal lacework is torn into large mosaic-like pieces in the course of secondary stem diameter growth. Both chemical and macroscopic differences may contribute to a reduced slipperiness of M. tanarius stems and appear to be functionally important. The distribution of wax crystals and their composition amongst different sections of the genus suggests that glaucousness is a polyphyletic character within Macaranga. Received 7 October 1999; accepted 3 December 1999  相似文献   
208.
This article measures the changes in energy use, blue water footprint, and greenhouse gas (GHG) emissions associated with shifting from current US food consumption patterns to three dietary scenarios, which are based, in part, on the 2010 USDA Dietary Guidelines (US Department of Agriculture and US Department of Health and Human Services in Dietary Guidelines for Americans, 2010, 7th edn, US Government Printing Office, Washington, 2010). Amidst the current overweight and obesity epidemic in the USA, the Dietary Guidelines provide food and beverage recommendations that are intended to help individuals achieve and maintain healthy weight. The three dietary scenarios we examine include (1) reducing Caloric intake levels to achieve “normal” weight without shifting food mix, (2) switching current food mix to USDA recommended food patterns, without reducing Caloric intake, and (3) reducing Caloric intake levels and shifting current food mix to USDA recommended food patterns, which support healthy weight. This study finds that shifting from the current US diet to dietary Scenario 1 decreases energy use, blue water footprint, and GHG emissions by around 9 %, while shifting to dietary Scenario 2 increases energy use by 43 %, blue water footprint by 16 %, and GHG emissions by 11 %. Shifting to dietary Scenario 3, which accounts for both reduced Caloric intake and a shift to the USDA recommended food mix, increases energy use by 38 %, blue water footprint by 10 %, and GHG emissions by 6 %. These perhaps counterintuitive results are primarily due to USDA recommendations for greater Caloric intake of fruits, vegetables, dairy, and fish/seafood, which have relatively high resource use and emissions per Calorie.  相似文献   
209.
Measures for vehicle exhaust emissions aimed at reducing either air pollution or global warming could have counterproductive effects on one another. Increasing diesel passenger vehicles, which generally have lower CO2 emissions than gasoline counterparts, leads to increasing particulate matter (PM) emissions, while gasoline has lower PM emissions than diesel. It is said that stringent limits on PM emission factors discourages improved CO2 emission factors. Without including both effects in a risk evaluation, one cannot evaluate whether the total risk is reduced or not. Hence, we evaluated representative exhaust emission measures based on risk evaluation for both air pollution and global warming. Considering consumer choice between diesel and gasoline passenger vehicles and emissions standards adopted in Japan from 1995 to 2005, we built five cases for vehicle policy evaluation. For each case, we estimated disability-adjusted life years (DALY) as an index of human health risk caused by lung cancer linked to inhalation exposure of elemental carbon in PM as well as due to global warming linked to CO2. The results of our risk evaluation reveal that the case adopting the 2005 new long-term Japanese emission standard reduces the human health risk caused by lung cancer due to air pollution by 0.6 × 103 DALY, but would increase the risk due to global warming by 31.9 × 103 DALY compared with the case of adopting EURO 4, for the same conditions of passenger vehicle choice from 1995. These results suggest that the characteristics of Japanese emissions standards are mainly designed to reduce air pollution.  相似文献   
210.
To achieve a safe and reliable drinking water supply, water producers need to manage a large range of risks regarding both water quality and quantity. A risk management approach where risks are systematically identified and handled in a preventive manner is promoted by the World Health Organization and supported by researchers and drinking water experts worldwide. Risk assessment is an important part of such a management approach, and a variety of tools for risk assessment are described in the literature. There is, however, little knowledge of how drinking water risk assessment is performed in practice, including which tools that are actually used. This study investigates the use of risk assessment tools, and the approach to risk management, on a local level in the Swedish water sector. It is based on interviews with key persons from a targeted selection of water producers. We find that the application of tools as well as the approach to risk assessment and management differs considerably between the water producers. The tools most frequently used are mainly the ones promoted or required by Swedish national organizations. Although many of the water producers have done some kind of risk assessment, most have not implemented a risk management approach. Furthermore, their knowledge of the concepts of risk and risk management is often limited. The largest challenge identified is to prioritize risk assessment, so that it is actually performed and then used as a basis for managing risk in a systematic way.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号