首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   5篇
  国内免费   4篇
安全科学   12篇
废物处理   14篇
环保管理   13篇
综合类   75篇
基础理论   55篇
污染及防治   55篇
评价与监测   16篇
社会与环境   5篇
灾害及防治   1篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   11篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   12篇
  2015年   16篇
  2014年   11篇
  2013年   16篇
  2012年   16篇
  2011年   13篇
  2010年   12篇
  2009年   10篇
  2008年   15篇
  2007年   20篇
  2006年   13篇
  2005年   10篇
  2004年   7篇
  2003年   11篇
  2002年   7篇
  2001年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1978年   1篇
排序方式: 共有246条查询结果,搜索用时 579 毫秒
201.
The effect of phenanthrene on the bacterial community was studied on permanent grassland soil historically presenting low contamination (i.e. less than 1 mg kg?1) by polycyclic aromatic hydrocarbons (PAHs). Microcosms of soil were spiked with phenanthrene at 300 mg kg?1. After 30 days of incubation, the phenanthrene concentration decreased rapidly until its total dissipation within 90 days. During this incubation period, significant changes of the total bacterial community diversity were observed, as assessed by automated-ribosomal intergenic spacer analysis fingerprinting. In order to get a deeper view of the effect of phenanthrene on the bacterial community, the abundances of ten phyla and classes (Actinobacteria, Acidobacteria, Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, Verrucomicrobiales, Gemmatimonadetes, and Planctomycetes) were monitored by quantitative polymerase chain reaction performed on soil DNA extracts. Interestingly, abundances of some bacterial taxa significantly changed as compared with controls. Moreover, among these bacterial groups impacted by phenanthrene spiking, some of them presented the potential of phenanthrene degradation, as assessed by PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene detection. However, neither the abundance nor the diversity of the PAH-RHDα genes was significantly impacted by phenanthrene spiking, highlighting the low impact of this organic contaminant on the functional bacterial diversities in grassland soil.  相似文献   
202.
Dissolved and particulate Ag concentrations (AgD and AgP, respectively) were measured in surface water and suspended particulate matter (SPM) along the salinity gradient of the Gironde Estuary, South West France, during three cruises (2008–2009) covering contrasting hydrological conditions, i.e. two cruises during intermediate and one during high freshwater discharge (~740 and ~2,300 m3/s). Silver distribution reflected non-conservative behaviour with 60–70 % of AgP in freshwater particles being desorbed by chlorocomplexation. The amount of AgP desorbed was similar to the so-called reactive, potentially bioavailable AgP fraction (60?±?4 %) extracted from river SPM by 1 M HCl. Both AgP (0.22?±?0.05 mg/kg) and AgP/ThP (0.025–0.028) in the residual fraction of fluvial and estuarine SPM were similar to those in SPM from the estuary mouth and in coastal sediments from the shelf off the Gironde Estuary, indicating that chlorocomplexation desorbs the reactive AgP. The data show that desorption of reactive AgP mainly occurs inside the estuary during low and intermediate discharge, whereas expulsion of partially AgP-depleted SPM (AgP/ThP ~0.040) during the flood implies ongoing desorption in the coastal ocean, e.g. in the nearby oyster production areas (Marennes-Oléron Bay). The highest AgD levels (6–8 ng/L) occurred in the mid-salinity range (15–20) of the Gironde Estuary and were decoupled from freshwater discharge. In the maximum turbidity zone, AgD were at minimum, showing that high SPM concentrations (a) induce AgD adsorption in estuarine freshwater and (b) counterbalance AgP desorption in the low salinity range (1–3). Accordingly, Ag behaviour in turbid estuaries appears to be controlled by the balance between salinity and SPM levels. The first estimates of daily AgD net fluxes for the Gironde Estuary (Boyle’s method) showed relatively stable theoretical AgD at zero salinity (Ag D 0 = 25–30 ng/L) for the contrasting hydrological situations. Accordingly, AgD net fluxes were very similar for the situations with intermediate discharge (1.7 and 1.6 g/day) and clearly higher during the flood (5.0 g/day) despite incomplete desorption. Applying Ag D 0 to the annual freshwater inputs provided an annual net AgD flux (0.64–0.89 t/year in 2008 and 0.56–0.77 t/year in 2009) that was 12–50 times greater than the AgD gross flux. This estimate was consistent with net AgD flux estimates obtained from gross AgP flux considering 60 % desorption in the estuarine salinity gradient.  相似文献   
203.
Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can be used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.  相似文献   
204.
The Gironde fluvial estuarine system is impacted by historic metal pollution (e.g. Cd, Zn, Hg) and oysters (Crassostrea gigas) from the estuary mouth have shown extremely high Cd concentrations for decades. Based on recent work (Chiffoleau et al., 2005) revealing anomalously high Ag concentrations (up to 65 mg kg−1; dry weight) in Gironde oysters, we compared long-term (∼1955-2001) records of Ag and Cd concentrations in reservoir sediment with the respective concentrations in oysters collected between 1979 and 2010 to identify the origin and historical trend of the recently discovered Ag anomaly. Sediment cores from two reservoirs upstream and downstream from the main metal pollution source provided information on (i) geochemical background (upstream; Ag: ∼0.3 mg kg−1; Cd: ∼0.8 mg kg−1) and (ii) historical trends in Ag and Cd pollution. The results showed parallel concentration-depth profiles of Ag and Cd supporting a common source and transport. Decreasing concentrations since 1986 (Cd: from 300 to 11 mg kg−1; Ag: from 6.7 to 0.43 mg kg−1) reflected the termination of Zn ore treatment in the Decazeville basin followed by remediation actions. Accordingly, Cd concentrations in oysters decreased after 1988 (from 109 to 26 mg kg−1, dry weight (dw)), while Ag bioaccumulation increased from 38 up to 116 mg kg−1, dw after 1993. Based on the Cd/Ag ratio (Cd/Ag ∼ 2) in oysters sampled before the termination of zinc ore treatment (1981-1985) and assuming that nearly all Cd in oysters originated from the metal point source, we estimated the respective contribution of Ag from this source to Ag concentrations in oysters. The evolution over the past 30 years clearly suggested that the recent, unexplained Ag concentrations in oysters are due to increasing contributions (>70% after 1999) by other sources, such as photography, electronics and emerging Ag applications/materials.  相似文献   
205.
Protecting structural features, such as tree-related microhabitats (TreMs), is a cost-effective tool crucial for biodiversity conservation applicable to large forested landscapes. Although the development of TreMs is influenced by tree diameter, species, and vitality, the relationships between tree age and TreM profile remain poorly understood. Using a tree-ring-based approach and a large data set of 8038 trees, we modeled the effects of tree age, diameter, and site characteristics on TreM richness and occurrence across some of the most intact primary temperate forests in Europe, including mixed beech and spruce forests. We observed an overall increase in TreM richness on old and large trees in both forest types. The occurrence of specific TreM groups was variably related to tree age and diameter, but some TreM groups (e.g., epiphytes) had a stronger positive relationship with tree species and elevation. Although many TreM groups were positively associated with tree age and diameter, only two TreM groups in spruce stands reacted exclusively to tree age (insect galleries and exposed sapwood) without responding to diameter. Thus, the retention of trees for conservation purposes based on tree diameter appears to be a generally feasible approach with a rather low risk of underrepresentation of TreMs. Because greater tree age and diameter positively affected TreM development, placing a greater emphasis on conserving large trees and allowing them to reach older ages, for example, through the establishment of conservation reserves, would better maintain the continuity of TreM resource and associated biodiversity. However, this approach may be difficult due to the widespread intensification of forest management and global climate change.  相似文献   
206.
Soil quality in urban areas in India is degraded due to multiple anthropogenic activities. The objectives of this work are to determine the concentration variations, toxicity, and sources of carbons, metals, and ions in the surface soil of Raipur, the industrialized capital city of Chhattisgarh state, India. High concentrations of Al, K, Ca, Ti, Fe, and elemental carbon (EC) were registered. Relatively lower concentrations of V, Cr, Mn, Ni, Cu, Zn, Sr, Ba, Pb, organic carbon (OC), and carbonate carbon (CC), as well as ions (viz. F, Cl, NO3, SO42–, Na+, K+, Mg2+, and Ca2+), were also recorded. EC was found to be one of the major pollutants, although enrichment factors pointed to high contamination with SO42–, K+, Mg2+, Cr, Mn, and Pb; and extreme contamination with NO3 and Ca2+. The spatial and temporal variations, enrichment factors, toxicity, and sources of the chemical species detected in the soil are discussed.  相似文献   
207.
The Biological Resource Centre for the Environment BRC4Env is a network of Biological Resource Centres (BRCs) and collections whose leading objectives are to improve the visibility of genetic and biological resources maintained by its BRCs and collections and to facilitate their use by a large research community, from agriculture research to life sciences and environmental sciences. Its added value relies on sharing skills, harmonizing practices, triggering projects in comparative biology, and ultimately proposing a single-entry portal to facilitate access to documented samples, taking into account the partnership policies of research institutions as well as the legal frame which varies with the biological nature of resources. BRC4Env currently includes three BRCs: the Centre for Soil Genetic Resources of the platform GenoSol, in partnership with the European Conservatory of Soil Samples; the Egg Parasitoids Collection (EP-Coll); and the collection of ichthyological samples, Colisa. BRC4Env is also associated to several biological collections: microbial consortia (entomopathogenic bacteria, freshwater microalgae…), terrestrial arthropods, nematodes (plant parasitic, entomopathogenic, animal parasitic...), and small mammals. The BRCs and collections of BRC4Env are involved in partnership with academic scientists, as well as private companies, in the fields of medicinal mining, biocontrol, sustainable agriculture, and additional sectors. Moreover, the staff of the BRCs is involved in many training courses for students from French licence degree to Ph.D, engineers, as well as ongoing training.  相似文献   
208.
Heavy metal contamination is of particular concern for human health and the environment. Phytoremediation is an emerging cost‐effective strategy to remediate heavy metal contaminated soil. However, this technique is limited by the small number of plants that are tolerant to heavy metals and are also accumulators. This study assayed zinc, lead, and cadmium tolerance and accumulation in Cistus libanotis, Cistus albidus, and Cistus salviifolius. The plants were cultivated in hydroponic conditions and exposed to different concentrations of Pb(NO3)2 (100 and 200 µM), ZnSO4 (100 and 200 µM), or CdCl2 (10 and 20 µM) for 3 weeks. Plant biomass and metal accumulation in roots and aboveground parts varied greatly among the species. All three species appeared to be sensitive to Zn. However, C. albidus displayed strong tolerance to Pb and accumulated large quantities of Pb and Cd in its roots. C. libanotis accumulated large quantities of Pb and Cd in its aboveground parts. C. libanotis can thus be classified as a Pb and Cd accumulator species. The study results show that C. albidus is suitable for phytostabilization of Pb‐contaminated soils, while C. libanotis can be used for phytoextraction of both Pb and Cd.  相似文献   
209.
Conservation of the marine environment mainly focuses on threatened elements and more precisely on vulnerable and endangered species like birds and mammals. When dealing with the conservation of marine habitats, the scientific community is mainly interested in hot spots of diversity, like seagrass beds in Europe, or hot spots of endemism, like coral reefs in tropical areas. Nevertheless, using the example of a common and widespread marine invertebrate, the sandmason worm (Lanice conchilega, Polychaeta, Terebellidae), we show that vulnerability and rarity are not the only criteria to take into account in order to select the best natural element for conservation. This species can form dense beds that increase biodiversity, are attractive feeding grounds for birds and fishes, and have a high socioeconomic value. In consequence, they have a high functional value that should be considered as an important conservation stake. Through the example of the Chausey archipelago and the Bay of the Mont Saint-Michel (France), we propose a synthetic interdisciplinary approach to evaluate the conservation needs of these beds. The issue is even more pressing when one considers that these natural elements and many similar ones still do not benefit from any legal protection in Europe despite their high heritage value.  相似文献   
210.
The photolysis of nitrogen dioxide and formaldehyde are two of the most influential reactions in the formation of photochemical air pollution, and their rates are computed using actinic flux determined from a radiative transfer model. In this study, we compare predicted and measured nitrogen dioxide photolysis rate coefficients (jNO2). We used the Tropospheric Ultraviolet-Visible (TUV) radiation transfer model to predict jNO2 values corresponding to measurements performed in Riverside, California as part of the 1997 Southern California Ozone Study (SCOS’97). Spectrally resolved irradiance measured at the same site allowed us to determine atmospheric optical properties, such as aerosol optical depth and total ozone column, that are needed as inputs for the radiative transfer model. Matching measurements of aerosol optical depth, ozone column, and jNO2 were obtained for 14 days during SCOS’97. By using collocated measurements of the light extinction caused by aerosols and ozone over the full height of the atmosphere as model input, it was possible to predict sudden changes in jNO2 resulting from atmospheric variability. While the diurnal profile of the rate coefficient was readily reproduced, jNO2 model predicted values were found to be consistently higher than measured values. The bias between measured and predicted values was 17–36%, depending on the assumed single scattering albedo. By statistical analysis, we restricted the most likely values of the single scattering albedo to a range that produced bias on the order of 20–25%. It is likely that measurement error is responsible for a significant part of the bias. The aerosol single scattering albedo was found to be a major source of uncertainty in radiative transfer model predictions. Our best estimate indicates its average value at UV-wavelengths for the period of interest is between 0.77 and 0.85.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号