首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2958篇
  免费   33篇
  国内免费   98篇
安全科学   132篇
废物处理   240篇
环保管理   451篇
综合类   370篇
基础理论   559篇
环境理论   1篇
污染及防治   948篇
评价与监测   243篇
社会与环境   125篇
灾害及防治   20篇
  2023年   11篇
  2022年   40篇
  2021年   50篇
  2020年   22篇
  2019年   52篇
  2018年   89篇
  2017年   78篇
  2016年   96篇
  2015年   70篇
  2014年   82篇
  2013年   260篇
  2012年   151篇
  2011年   183篇
  2010年   120篇
  2009年   153篇
  2008年   175篇
  2007年   189篇
  2006年   163篇
  2005年   132篇
  2004年   124篇
  2003年   133篇
  2002年   111篇
  2001年   72篇
  2000年   48篇
  1999年   29篇
  1998年   30篇
  1997年   32篇
  1996年   25篇
  1995年   26篇
  1994年   35篇
  1993年   29篇
  1992年   14篇
  1991年   23篇
  1990年   20篇
  1989年   13篇
  1988年   16篇
  1986年   13篇
  1985年   17篇
  1984年   13篇
  1983年   19篇
  1982年   20篇
  1981年   17篇
  1980年   16篇
  1979年   10篇
  1978年   11篇
  1977年   7篇
  1974年   6篇
  1973年   6篇
  1972年   7篇
  1971年   8篇
排序方式: 共有3089条查询结果,搜索用时 234 毫秒
111.
Gasification experiments for sawdust were conducted using a fixed bed reactor at 900 °C by varying the secondary oxidant injection ratio to determine the optimal conditions for tar removal along with the enhancement of gasification efficiency. Secondary oxidant was injected as an oxidant at the top zone of the gasifier in varying ratios of 10–30% of the total amount of oxidant. This method was based on the primary method of tar removal and gasification efficiency improvement by thermal cracking of tar. Various gasification performance parameters were evaluated and tar content was estimated by measuring the fluctuation of weight of the activated carbon filter. The results showed that the concentration of tar in the producer gas decreased by injecting the secondary oxidant, even though syngas yield decreased. The recycling potential of the char produced in the gasification experiments was also assessed with the purpose of utilizing char as an adsorbent by determining its surface area and pore volume. The results demonstrated that the char produced from the gasification experiment had similar quality to that of the activated carbon used in this experiment.  相似文献   
112.
The catalytic upgrading pyrolysis of pine sawdust was performed at 500 °C with various metal oxides to improve the quality of the bio-oil. The aim of this study was to investigate the potential of the metal oxides instead of traditional zeolites for catalytic upgrading pyrolysis with the analysis of Gas Chromatograph/Mass Spectrometer. In this study, the used catalysts were Calcium-oxide, Magnesium oxide, Titanium dioxide, and Zeolite (Si/Al?=?80). The influence of catalysts on products yields and compositions were investigated. Most metal oxides can enhance the bio-gas with the bio-oil yields decreased. The metal oxides led to a decrease of Acids, Aldehydes, Ketones and an increase of Furfural, Cresols, Catechols in Furans and Phenolics. Among the catalysts, the MgO catalysts was the most effective to convert the high molecular into lights ones (6.65% Cresols) with yield of 20.48% for Furfural. The deoxygenation reaction in bio-oil was suggested to convert oxygenated compounds into the low molecular weight of the materials (6.39% Guaiacols). Thus, the used metal oxides can improve the quality of bio-oil by decreasing undesirable compounds as well as increasing the desirable compounds with low oxygen contents via deoxygenation reaction.  相似文献   
113.
In this research, absorbents for CO2 capture were prepared by blending 30 wt% potassium carbonate, 3 wt% of a rate promoter, and 1 wt% of a corrosion inhibitor. Pipecolic acid, sarcosine, and diethanolamine were chosen as rate promoter candidates. Based on a rate promoter screening test for CO2 loading capacity and absorption rate, pipecolic acid and sarcosine were selected to be used as rate promoters. 1,2,3-benzotriazole and ammonium thiocyanate were chosen as corrosion inhibitors, and they were mixed with a 30 wt% potassium carbonate-based absorbent mixture containing one of the rate promoters. The absorption rates for four absorbent solutions (30 wt% potassium carbonate?+?3 wt% pipecolic acid?+?1 wt% 1,2,3-benzotriazole, 30 wt% potassium carbonate?+?3 wt% pipecolic acid?+?1 wt% ammonium thiocyanate, 30 wt% potassium carbonate?+?3 wt% sarcosine?+?1 wt% 1,2,3-benzotriazole, and 30 wt% potassium carbonate?+?3 wt% sarcosine?+?1 wt% ammonium thiocyanate) were measured, tabulated, and graphically displayed. These types of absorbents can be used for capturing CO2 under high temperature and pressure conditions, such as those found in coal-fired power plants.  相似文献   
114.
A poly(lactic acid) (PLA)/polyamide 11 (PA11)/SiO2 composite was mixed from PLA, PA11, and nanosilica particles through twin-screw extrusion. The PLA/PA11/SiO2 composite was evaluated with tensile and Izod impact tests, light transmission and haze measurement, and isothermal and nonisothermal crystallization behavior determinations. The PLA/PA11/SiO2 (97.0/3.0) composite had approximately 10.8% less ultimate tensile strength than neat PLA, but it had greater ductility and approximately ninefold greater elongation at break. A dimple morphology was observed on the fractural surface of the PLA/PA11/SiO2 composite, indicating that the incorporation of PA11 and nanosilica particles increased the ductility of the PLA matrix. PLA with less than 3 wt% of PA11 and 0.5 phr of nanosilica particles had an Izod impact strength of 8.72 kJ/m2. PA11 and nanosilica particles effectively toughened this PLA polymer; they accelerated both isothermal and nonisothermal crystallization rates and increased the crystallinities of the resulting composites under isothermal and nonisothermal crystallization processes.  相似文献   
115.
Environmental Science and Pollution Research - We investigated the distribution of nitrogen compounds in Han River as well as two tributaries of Tancheon and Jungrangcheon. Particularly, we...  相似文献   
116.

Simultaneous immobilization of heavy metals and decomposition of halogenated organic compounds in different fractions of automobile shredder residue (ASR) were achieved with a nano-sized metallic calcium through a 60-min ball milling treatment. Heavy metal (HM) immobilization and chlorinated/brominated compound (CBC) decomposition efficiencies both reached 90–100 %, after ball milling with nanometallic calcium/calcium oxide (Ca/CaO) dispersion, regardless of ASR particle size (1.0, 0.45–1.0, and 0.250 mm). Concentrations of leachable HMs substantially decreased to a level lower than the regulatory standard limits (Co and Cd 0.3 mg L−1; Cr 1.5 mg L−1; Fe, Pb, and Zn 3.0 mg L−1; Mn and Ni 1 mg L−1) proposed by the Korean hazardous waste elution standard regulatory threshold. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) element maps/spectra showed that while the amounts of HMs and CBCs detectable in ASR significantly decreased, the calcium mass percentage increased. X-ray powder diffraction (XRD) patterns indicate that the main fraction of enclosed/bound materials on ASR includes Ca-associated crystalline complexes that remarkably inhibit HM desorption and simultaneously transform dangerous CBCs into harmless compounds. The use of a nanometallic Ca/CaO mixture in a mechanochemical process to treat hazardous ASR (dry conditions) is an innovative approach to remediate cross-contaminated residues with heavy metals and halogenated compounds.

  相似文献   
117.
An organic Rankine cycle (ORC) is generally used for converting low-grade heat into electricity. In this study, an extensive literature survey was conducted to identify current research gaps on experimental ORC systems. Specifically, there is limited experimental data and limited details on thermal and expander efficiencies of ORC systems. In order to address these gaps, the objective of this study included developing a turbine ORC with a power output exceeding 50 kW and thermal efficiency exceeding 8% for a heat source temperature < 120°C. The experimental results indicated that the system achieved a net power output of 242.5 kW and a thermal efficiency of 8.3% (the highest value for a turbine ORC system for the heat source temperature below 120°C). Thus, the study addressed the gaps identified in the research area of ORCs.  相似文献   
118.
In this paper, an isolated ac module with pseudo dc-link and galvanic isolation is proposed for photovoltaic energy conversion. The studied grid-tie ac module can individually extract the maximum solar power from each photovoltaic panel and transfer to ac utility system. It consists of an interleaved active-clamping single-ended primary-inductive circuit (SEPIC) with a secondary voltage doubler, a full-bridge polarity selector operating under line frequency to achieve high efficiency. For the studied topology, key features such as reduced input current ripple, zero-voltage switching (ZVS) of primary switches, low reverse-recovery current of the output diodes, and lower switch voltage stress are obtained. Also, to reduce input current ripple, an interleaved control strategy is adopted. A simple control strategy is proposed to generate a rectified sinusoidal waveform voltage at the pseudo dc-link capacitors and achieve the high maximum power point tracking (MPPT) accuracy. The operation principles and design considerations of the studied ac module are analyzed and discussed. A prototype with 25–60 V dc input, 110 V/60 Hz ac output and 150 W power rating has been constructed for verifying the feasibility of the proposed ac module.  相似文献   
119.
120.
Converting lipid-extracted microalgal wastes to methane (CH4) via anaerobic digestion (AD) has the potential to make microalgae-based biodiesel platform more sustainable. However, it is apparent that remaining n-hexane (C6H14) from lipid extraction could inhibit metabolic pathway of methanogens. To test an inhibitory influence of residual n-hexane, this study conducted a series of batch AD by mixing lipid-extracted Chlorella vulgaris with a wide range of n-hexane concentration (~10 g chemical oxygen demand (COD)/L). Experimental results show that the inhibition of n-hexane on CH4 yield was negligible up to 2 g COD/L and inhibition to methanogenesis became significant when it was higher than 4 g COD/L based on quantitative mass balance. Inhibition threshold was about 4 g COD/L of n-hexane. Analytical result of microbial community profile revealed that dominance of alkane-degrading sulfate-reducing bacteria (SRB) and syntrophic bacteria increased, while that of methanogens sharply dropped as n-hexane concentration increased. These findings offer a useful guideline of threshold n-hexane concentration and microbial community shift for the AD of lipid-extracted microalgal wastes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号