首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5836篇
  免费   653篇
  国内免费   2352篇
安全科学   722篇
废物处理   268篇
环保管理   546篇
综合类   4042篇
基础理论   937篇
污染及防治   1378篇
评价与监测   332篇
社会与环境   331篇
灾害及防治   285篇
  2024年   36篇
  2023年   149篇
  2022年   360篇
  2021年   355篇
  2020年   390篇
  2019年   278篇
  2018年   291篇
  2017年   362篇
  2016年   295篇
  2015年   428篇
  2014年   476篇
  2013年   581篇
  2012年   584篇
  2011年   582篇
  2010年   532篇
  2009年   443篇
  2008年   477篇
  2007年   409篇
  2006年   352篇
  2005年   214篇
  2004年   175篇
  2003年   125篇
  2002年   139篇
  2001年   126篇
  2000年   109篇
  1999年   90篇
  1998年   91篇
  1997年   73篇
  1996年   57篇
  1995年   64篇
  1994年   47篇
  1993年   43篇
  1992年   36篇
  1991年   23篇
  1990年   9篇
  1989年   12篇
  1988年   7篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
排序方式: 共有8841条查询结果,搜索用时 15 毫秒
901.
The significant warming in urban environment caused by the combined effects of global warming and heat island has stimulated widely development of urban vegetations. However, it is less known of the climate feedback of urban lawn in warmed environment. Soil warming effect on net ecosystem exchange (NEE) of carbon dioxide during the transition period from winter to spring was investigated in a temperate urban lawn in Beijing, China. The NEE (negative for uptake) under soil warming treatment (temperature was about 5℃ higher than the ambient treatment as a control) was -0.71 μmol/(m2.sec), the ecosytem was a CO2 sink under soil warming treatment, the lawn ecosystem under the control was a CO2 source (0.13 μmol/(m2.sec)), indicating that the lawn ecosystem would provide a negative feedback to global warming. There was no significant effect of soil warming on nocturnal NEE (i.e., ecosystem respiration), although the soil temperature sensitivity (Q10) of ecosystem respiration under soil warming treatment was 3.86, much lower than that in the control (7.03). The CO2 uptake was significantly increased by soil warming treatment that was attributed to about 100% increase of α (apparent quantum yield) and Amax (maximum rate of photosynthesis). Our results indicated that the response of photosynthesis in urban lawn is much more sensitive to global warming than respiration in the transition period.  相似文献   
902.
在土壤污染和地下水污染的现场,挥发过程是挥发性污染物暴露的重要途径.设置典型土壤污染场景作为研究对象,选取Johnson&Ettinger模型和Volasoil模型进行室内挥发过程的模拟和暴露浓度的计算.对两个模型中污染物的运移机理进行了比较和分析.尽管方法和参数选择有所不同,二者对污染源处三相平衡浓度的计算本质上是一致的.暴露浓度的计算结果表明,两个模型对室内挥发过程的模拟可能会有较大差异,与污染现场的具体情况有关.参数影响的分析表明,污染源顶部埋深对二者暴露浓度的影响一致,Johnson&Ettinger模型对污染土壤含水率的大小非常敏感.建议考虑房屋结构的实际情况,选用或者改进模型进行室内挥发过程的评价.  相似文献   
903.
甲苯作为土壤酶测定的前处理试剂及许多有机污染物在环境中降解的中间产物,有关其对土壤酶的影响研究在土壤酶学和环境科学领域具有重要意义.因此,采用模拟方法,较系统地研究了不同剂量甲苯和处理时间下芳基硫酸酯酶活性的变化规律.结果表明,甲苯对纯酶具有明显的抑制作用,酶活性降幅最大达到45.5%;灭菌土壤对溶液中的纯酶有很强的吸附能力;极微量的甲苯即可完成对土壤中酶活性的激活作用,酶活性增幅为109%~298%;随着甲苯剂量的增加,土壤酶活性的变化幅度逐渐趋缓,并可用Langmuir模型较好地拟合,由此获得了最大表观酶活性Umax,发现其与土壤性质显著相关,说明甲苯主要是通过杀死土壤中的微生物来影响土壤酶活性的.此外,初步探讨了不同土壤中胞外酶量与胞内酶量的关系,发现在供试土样中土壤芳香硫酸酯酶胞外酶和胞内酶分别占54.4%和45.6%.本研究可为后续土壤酶测定质量的完善和提高提供依据.  相似文献   
904.
三峡澎溪河回水区消落带岸边土壤重金属污染分布特征   总被引:6,自引:0,他引:6  
在对澎溪河回水区消落带及岸边土样品中重金属含量和样品理化性质测定的基础上,重点分析了该区域内重金属分布特征,并对重金属元素间的相关性展开研究.同时,应用地累积指数对研究区域污染现状进行评价.结果表明,消落带样品中Cu、Cr、Zn、As、Cd、Pb、Hg的平均含量分别为28.17、59.21、108.98、4.77、2.02、28.85、0.52mg·kg-1;岸边土样品中重金属的含量范围分别为22.32、54.90、98.05、7.87、0.77、22.97、0.94mg·kg-1.Cd是三峡库区污染较严重的重金属元素.相关性分析表明:在消落带样品中,Cd与Zn显著相关(p〈0.01),Pb、Hg和Cu、As都存在显著的正相关关系,说明这4种重金属元素在接受外来污染时可能存在相似性;在岸边土样品中,Cd与Zn、Cr与Cu、As与Hg显著相关(p〈0.01),Pb与Cu、Cr、Zn、Cd显著正相关,表明这几种重金属可能有着相似的来源.消落带样品重金属污染程度评价结果为:Cd〉Hg〉Zn〉Pb〉Cu〉As〉Cr,岸边土样品重金属污染程度评价结果为:Hg〉Cd〉Zn〉As〉Pb〉Cu〉Cr,Cd和Hg在个别站位达到了严重污染水平.消落带土壤受人为扰动后会成为水体的二次污染源,因此,消落带土壤重金属对水体的潜在影响不容忽视.  相似文献   
905.
分别在G310国道郑州-开封段的杏花营路段两侧150m×150m范围内布设7条垂直于公路的采样子断面,从路肩向两侧每隔10m采集1个表土混合样,共采集226个样品(包括2个对照样品).用ICP-MS测定了土壤重金属(Pb、Cu、Zn、Cd、Cr和Ni)含量,并用Universal Kriging插值法分析路旁土壤重金属空间分布特征.结果表明,路旁土壤重金属呈与道路平行的带状分布,表明6种重金属含量均受公路交通影响,属于公路源重金属.土壤Cr和Cu含量在路基处含量最高,向两侧逐渐下降,呈指数分布;土壤Pb、Zn、Cd和Ni含量在距路基30~50m处出现峰值,呈偏态分布.路旁土壤Pb、Cu、Zn、Cd、Cr和Ni均为交通源重金属.  相似文献   
906.
面对全球日益兴起的“低碳经济”理念,包括我国在内的很多国家都将其作为转变经济发展方式实现绿色发展的契机。低碳产品认证是推进中国低碳经济走向绿色发展的重要举措。本文通过借鉴国外低碳产品认证的经验,提出应从关注环境保护与气候变化协同效应、选择适合的产品类型、逐渐实现产品生命周期碳排放管理等方面提升和推动我国低碳产品认证工作的发展。  相似文献   
907.
以铬污染地下水为研究对象,用零价铁作为反应介质设计了可渗透反应墙(PRB),对零价铁处理铬污染地下水的处理效果和长期稳定性进行了研究。对不同粒径的铁粉处理效果进行对比,发现铁粉粒径越小,处理效果越好。用铁粉作为PRB反应介质,对PRB处理铬污染地下水的长期稳定性进行了研究。试验结果表明,采用Fe0-PRB原位技术处理铬污染地下水,铁粉粒径越小处理废水的水质越好,但介质粒径越小,反应器渗透系数越小,处理水量显著减少;且铁粉在处理含铬废水时生成了大量的难溶化合物,容易造成填料堵塞,导致铁粉利用效率不高。因此有必要研制铁粉复合填料,增大填料的渗透性,提高填料处理含铬废水时铁粉的利用效率。  相似文献   
908.
介绍了生物修复有机污染的土壤和水体的研究进展,对微生物和酶处理的技术进行了详细讨论。降解有机物的微生物以白腐真菌为代表,可有效降解多环芳烃;降解有机物的酶以过氧化物酶和水解酶为代表,分别能够降解芳香族化合物和有机农药。  相似文献   
909.
Three oxidation processes of UV-Fe3+(EDTA)/H2O2 (UV: ultraviolet light; EDTA: ethylenediaminetetraacetic acid), UV-Fe3+/H2O2 and Fe3+/H2O2 were simultaneously investigated for the degradation of amoxicillin at pH 7.0. The results indicated that, 100% amoxicillin degradation and 81.9% chemical oxygen demand (CODCr) removal could be achieved in the UV-Fe3+ (EDTA)/H2O2 process. The treatment efficiency of amoxicillin and CODCr removal were found to decrease to 59.0% and 43.0% in the UV-Fe3+/H2O2 process; 39.6% and 31.3% in the Fe3+/H2O2 process. Moreover, the results of biodegradability (biological oxygen demand (BOD5)/CODCr ratio) revealed that the UV-Fe3+ (EDTA)/H2O2 process was a promising strategy to degrade amoxicillin as the biodegradability of the effluent was improved to 0.45, compared with the cases of UV-Fe3+/H2O2 (0.25) and Fe3+/H2O2 (0.10) processes. Therefore, it could be deduced that EDTA and UV light performed synergetic catalytic effect on the Fe3+/H2O2 process, enhancing the treatment efficiency. The degradation mechanisms were also investigated via UV-Vis spectra, and high performance liquid chromatography-mass spectra. The degradation pathway of amoxicillin was further proposed.  相似文献   
910.
实验用水热合成法制备出银、钕掺杂TiO2催化剂粉体,然后以高压汞灯为光源,掺杂TiO2催化剂粉体为光化降解催化剂,探究对甲基橙模拟印染废水光催化分解的效果。光解实验研究采用正交设计法,以模拟废水浓度、催化剂用量、光照时间以及pH为因素,各因素选取4个水平,对催化光解甲基橙染料的降解率进行评价。分析结果表明:银、钕掺杂TiO2催化剂对甲基橙光化降解有良好的效果,最佳实验条件为:溶液pH为5,甲基橙的初始质量浓度为2 mg/L,催化剂投加量60 mg/L和光照时间80 min。在最佳条件下,连续光照8 h后甲基橙的降解率达到92%以上。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号