Due to the high rates of energy consumption and its impact on environment over the last decades, policy decision-makers are increasingly recognising the need to take actions that allow to address problems associated with the deployment of non-renewable resources and climate changes. One field of action has been the promotion of measures that contribute to improve energy efficiency of countries. The purpose of this study is to identify the main factors explaining changes in energy efficiency applying the multiplicative Log Mean Divisia Index decomposition method for a set of countries (Portugal, UK, Brazil and China) with different socio-economic background and energy mix. The results show that overall energy efficiency trends display different patterns between countries and the same happens within each country from a sectoral perspective. Major drivers of improvements of overall energy efficiency were the intensity effect and the affluence effect, whereas the driver that hampered those improvements was the energy consumption per capita. Some policy implications derived from the results achieved are: policy decision-makers should support measures that promote the adoption of energy-saving technologies resulting from new technological developments; policy measures should be directed to raise awareness of end-users regarding energy efficiency and energy conservation efforts; policy measures promoting economic growth through the development (or expansion) of sectors of activity that consume less energy can also be implemented; finally, policy instruments may also be used to reduce the costs of implementing energy efficiency and energy-saving measures to households and firms. 相似文献
Despite the often mentioned environmental benefits associated with transition from fossil fuels to renewable energy sources, their use for electricity production has non-negligible negative environmental impacts. The most commonly mentioned in surveys concern different types of landscape impacts, impacts on the fauna and flora, and noise. These impacts differ by size and location of plants, and by source of energy, rendering the policy decision complex. In addition, there are other welfare issues to take into consideration, as positive and negative environmental impacts are not evenly distributed among population groups. This paper proposes to compare the welfare impacts of renewable energy sources controlling for the type of renewable as well as the specific environmental impact by source. To this end, two discrete-choice experiments are designed and applied to a national sample of the Portuguese population. In one case, only individual negative impacts of renewables are used, and in another case, the negative impacts interact with a specific source. Results show the robustness of discrete-choice experiments as a method to estimate the welfare change induced by the impacts of renewable energy sources. Overall, respondents are willing to pay to reduce the environmental impacts, thus making compensation for local impacts feasible. Moreover, the estimations reveal that respondents are significantly sensitive to the detrimental environmental effects of specific renewable energy sources, being willing to pay more to use these sources of energy relative to others. 相似文献
Although studies on environmental conflicts have engaged with the subject of violence, a multidimensional approach has been lacking. Using data from 95 environmental conflicts in Central America, we show how different forms of violence appear and overlap. We focus on direct, structural, cultural, slow, and ecological forms of violence. Results suggest that the common understanding of violence in environmental conflicts as a direct event in time and space is only the tip of the iceberg and that violence can reach not only environmental defenders, but also communities, nature, and the sustainability of their relations. 相似文献
Monitoring of body burden of toxic elements is usually based on analysis of concentration of particular elements in blood, urine and/or hair. Analysis of these matrices, however, predominantly reflects short- or medium-term exposure to trace elements or pollutants. In this work, urinary stones were investigated as a matrix for monitoring long-term exposure to toxic and essential elements. A total of 431 samples of urinary calculi were subjected to mineralogical and elemental analysis by infrared spectroscopy and inductively coupled plasma mass spectrometry. The effect of mineralogical composition of the stones and other parameters such as sex, age and geographical location on contents of trace and minor elements is presented. Our results demonstrate the applicability of such approach and confirm that the analysis of urinary calculi can be helpful in providing complementary information on human exposure to trace metals and their excretion. Analysis of whewellite stones (calcium oxalate monohydrate) with content of phosphorus <0.6 % has been proved to be a promising tool for biomonitoring of trace and minor elements.
Environmental Science and Pollution Research - The most common mycotoxin found in European foodstuffs, especially unprocessed grains, is deoxynivalenol (DON), which inhibits proteosynthesis and... 相似文献
Environmental Science and Pollution Research - This work proposes a novel approach for the coupling of ozonation and Fenton processes using a new prototype of a high rotation bubble reactor (HRBR),... 相似文献
Environmental Science and Pollution Research - Phytoremediation techniques have been proposed as ecological methods to clean up contaminated sites. This study is aimed to evaluate the effect of the... 相似文献
The removal of heavy metals from wastewater has become a global challenge, which demands the continuous study of efficient and low-cost treatment alternatives such as adsorption. In this research, the removal of zinc was evaluated using batch adsorption processes with nonconventional materials such as graphene oxide (GO), magnetite (MG), and their composites (GO:MG), formulated with three weight ratios (2:1, 1:1, and 1:2). Graphene was synthesized by the modified Marcano method, using pencil lead graphite as a precursor. MG and the composites were synthesized by chemical coprecipitation of ferrous sulfate and ferric chloride. The materials were characterized by Raman and Fourier transform infrared spectroscopies, scanning electron microscopy, X-ray diffraction, and the Brunauer–Emmett–Teller method to determine the functional groups, microstructural and morphological characteristics, and specific surface area. Batch adsorption tests were carried out to optimize the adsorbent dose and contact time with zinc solutions of 10 ppm. Zinc adsorption reached equilibrium at 2 h, with an optimal dose between 0.25 and 1.0 g/L. The maximum zinc removal efficiencies/adsorption capacities were 98.6%/165.6, 83.4%/47.6, 83.5%/21.9, 72.8%/19.9, and 82.2%/9.25 mg/g using GO, 2GO:1MG, 1GO:1MG, 1GO:2MG, and MG, respectively. Furthermore, the analysis of the isotherm and adsorption kinetics models determined that the adsorption processes using MG and the composites fit the Sips and pseudo-second-order models. 相似文献
The objective of this study was to impregnate the surface of palm coconut activated carbon with nanoparticles of iron compounds using Moringa oleifera leaf extracts and pomegranate leaf by a green synthesis method and to evaluate its adsorption capacity for sodium diclofenac. The adsorbent material was characterized by zeta potential, X-ray diffraction (XRD), N2 adsorption/desorption (BET method), transmission electronic microscopy (TEM), and scanning electronic microscopy (SEM) coupled to dispersive energy spectrometry X-ray (EDX) methods. To evaluate the adsorption capacity of sodium diclofenac, the influence of pH, kinetics, isotherms, and thermodynamic properties were analysed. The impregnated adsorbents showed efficiency in the adsorption of sodium diclofenac. The kinetic model that best fit the experimental data was the pseudo-second-order model, and the equilibrium model was the Langmuir model. As for the thermodynamic study, it was verified that the adsorption reaction for all adsorbents occurs in a spontaneous, favourable way, and it is endothermic by physisorption. Therefore, this process is promising because it is a clean and non-toxic method when compared with chemical methods for the synthesis of nanoparticles.