首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1133篇
  免费   67篇
  国内免费   338篇
安全科学   96篇
废物处理   45篇
环保管理   100篇
综合类   665篇
基础理论   198篇
污染及防治   263篇
评价与监测   60篇
社会与环境   56篇
灾害及防治   55篇
  2024年   3篇
  2023年   18篇
  2022年   60篇
  2021年   45篇
  2020年   32篇
  2019年   28篇
  2018年   49篇
  2017年   39篇
  2016年   37篇
  2015年   47篇
  2014年   72篇
  2013年   92篇
  2012年   66篇
  2011年   82篇
  2010年   75篇
  2009年   70篇
  2008年   74篇
  2007年   47篇
  2006年   70篇
  2005年   54篇
  2004年   35篇
  2003年   56篇
  2002年   68篇
  2001年   63篇
  2000年   35篇
  1999年   38篇
  1998年   52篇
  1997年   29篇
  1996年   26篇
  1995年   14篇
  1994年   23篇
  1993年   14篇
  1992年   11篇
  1991年   4篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
  1983年   2篇
排序方式: 共有1538条查询结果,搜索用时 31 毫秒
441.
关东明  钟克师  彭先佳 《环境工程》2013,31(1):122-125,132
通过土壤室内培养实验,研究了赤泥和污泥对土壤中Zn化学形态转化的影响。研究表明:单独使用赤泥可以有效降低土壤中植物可利用态Zn含量,促进可交换态(EXC)、碳酸盐结合态(CA)、有机结合态(OM)转化为残渣态(RES),而污泥对Zn的固稳效果是暂时的。赤泥和污泥的一起使用较单独使用赤泥或污泥固稳Zn的效果好,既能促进有效态重金属Zn转化为不可利用态Zn,又能增加土壤肥力。  相似文献   
442.
Coking coals are the important raw materials for the iron and steel industries and play an important role on its sustainable development, especially on the stamp-charging coke making with the characteristics of increasing the bulk density. There is a significance on the reasonable usage of the coking coal resource with the reduced production cost, improved efficiency of the economy to develop the stamp-charging coke making technology. Important effects of the density of coking coal on the coking and caking properties were investigated. In the article, the maximum values of swelling pressure and variation of Laowan gas coal and Xinjian 1/3 coking coal, Longhu fat coal and Didao coking coal, which were mined at Shenyang and Qitaihe respectively, were investigated under different bulk densities during the coking. The results showed that when the values of density increased from 0.85 ton/m3 to 1.05 ton/m3, for the Laowan gas coal, swelling pressure variation and even the maximum value changed slightly. The swelling pressure was 3.63 KPa when the density was improved to 1.05 ton/m3; for the Xinjian 1/3 coking coal, the values of swelling pressure changed significantly and the maximum values was 82.88 KPa with the density improved to 1.05 when the coal was heated to 600℃. The coke porosity, which was investigated by automatic microphotometer, decreased from 47.4% to 33.1% with the increasing of the density from 0.85 ton/m3 to 1.05 ton/m3, and the decreased value was 14.3%. Meanwhile, the pore structures of four cokes were characterized by an optical microscope.  相似文献   
443.
Long flame coal are abundant and widely distributed in China, but the resource utilization is quite low, the production efficiency is not high. Stamp-charging coke making technology can bend some long flame coal, which can reduce production cost and expand the coking coal resources. The long flame coal of different mass fraction is added into prime coking coal including fat coal from Longhu, 1/3 coking coal from Xinjian and coking coal from Didao in experiment. The swelling pressure is tested on-line detection using pressure sensor in coke making process, and the pores are observed by scanning electron microscopy. The results show that, the swelling pressure first increase and then decrease with the temperature increased and the maximum swelling pressure reduces gradually with mass fraction of the Long flame coal from Shenmu increased in coke making process. The SEM images of resultant coke display that the coke get more and more loose and the amount of pores is increased with mass fraction of the long flame coal from Shenmu increased. The amount pores and the pore diameter both is minimum for coking coal from Didao as prime coking coal under the same fraction of long flame coal.  相似文献   
444.
Coking coals are the important raw materials for the iron and steel industries and play an important role on its sustainable development, especially on the stamp-charging coke making with the characteristics of increasing the bulk density. There is a significance on the reasonable usage of the coking coal resource with the reduced production cost, improved efficiency of the economy to develop the stamp-charging coke making technology. Important effects of the density of coking coal on the coking and caking properties were investigated. In the article, the maximum values of swelling pressure and variation of Laowan gas coal and Xinjian 1/3 coking coal, Longhu fat coal and Didao coking coal, which were mined at Shenyang and Qitaihe respectively, were investigated under different bulk densities during the coking. The results showed that when the values of density increased from 0.85 ton/m3 to 1.05 ton/m3, for the Laowan gas coal, swelling pressure variation and even the maximum value changed slightly. The swelling pressure was 3.63 KPa when the density was improved to 1.05 ton/m3; for the Xinjian 1/3 coking coal, the values of swelling pressure changed significantly and the maximum values was 82.88 KPa with the density improved to 1.05 when the coal was heated to 600°C. The coke porosity, which was investigated by automatic microphotometer, decreased from 47.4% to 33.1% with the increasing of the density from 0.85 ton/m3 to 1.05 ton/m3, and the decreased value was 14.3%. Meanwhile, the pore structures of four cokes were characterized by an optical microscope.  相似文献   
445.
Mercury (Hg) in rice is drawing mounting concern since methylmercury (MeHg) was found capable of accumulating in rice. In-vitro bioaccessibility is a feasible and reliable method to assess the health effects of Hg in rice and has been utilized in a number of studies. This study was done to investigate the impact of cultivar, planting location, and cooking on the total mercury (THg) and MeHg bioaccessibility of rice, for which multiple statistical analysis methods were used to analyze the significance of their effects. The THg concentrations of rice samples taken from non-Hg contaminated areas of China were all below 15 ng/g and their MeHg concentrations were below 2 ng/g. Cooking could significantly reduce the MeHg bioaccessibility of rice because the MeHg was mainly combined with protein and the protein will be denatured during the cooking process, and then the denatured MeHg is difficult to be dissolved into the liquid phase. Indica- and japonica-type rice cultivars did not show significant differentiation in either the concentration of Hg or its bioaccessibility. However, the glutinous rice type differed significantly from the above rice types, and it showed greater bioaccessibility of THg and MeHg due to its distinct protein contents and starch properties. Planting location can affect the Hg concentration in rice and THg bioaccessibility but has a limited impact on MeHg bioaccessibility. Based on these results, two macro factors (rice cultivar, planting location) are presumed to impact Hg bioaccessibility by how they affect micro factors (i.e., Hg forms).  相似文献   
446.
Current knowledge about the transformation of total mercury and methylmercury (MeHg) in aerobic composting process is limited. In this study, the composition and transformation of mercury and dissovled organic matter (DOM) in aerobic composting process of municipal sewage sludge were were comprehensively characterized, and the differences among the three C/N ratio (20, 26 and 30) were investigated. The main form of mercury in C/N 20 and 26 was organo-chelated Hg (F3, 46%-60%); while the main form of mercury in C/N 30 was mercuric sulfide (F5, 64%-70%). The main component of DOM in C/N 20 and 26 were tyrosine-like substance (C1, 53%-76%) while the main fractions in C/N 30 were tyrosine-like substance (C1, 28%-37%) and fulvic-like substance (C2, 17%-39%). The mercury and DOM varied significantly during the 9 days composting process. Compared to C/N 20 and 26, C/N 30 produced the less MeHg after aerobic composting process, with values of 658% (C/N 20), 1400% (C/N 26) and 139% (C/N 30) of the initial, respectively. Meanwhile, C/N 30 produced the best compost showed greater degree of DOM molecular condensation and humification. Hg fraction had been altered by DOM, as indicated by a significant correlation between mercury species and DOM components. Notably, C/N 30 should be used as an appropriate C/N ratio to control the methylation processes of mercury and degration of DOM.  相似文献   
447.
Antimony (Sb) is a recognized priority pollutant with toxicity that is influenced by its migration and transformation processes. Oxidation of Fe(II) to Fe(III) oxides, which is a common phenomenon in the environment, is often accompanied by the formation of Mn(III/IV) and might affect the fate of Sb. In this study, incorporated Mn(III) and sorbed/precipitated Mn(III/IV) associated with lepidocrocite were prepared by adding Mn(II) during and after Fe(II) oxidation, respectively, and the effects of these Mn species on Sb fate were investigated. Our results indicated that the association of these Mn species with lepidocrocite obviously enhanced Sb(III) oxidation to Sb(V), while concomitantly inhibiting Sb sorption due to the lower sorption capacity of lepidocrocite for Sb(V) than Sb(III). Additionally, Mn oxide equivalents increased in the presence of Sb, indicating that Sb oxidation by Mn(III/IV) associated with lepidocrocite was a continuous recycling process in which Mn(II) released from Mn(III/IV) reduction by Sb(III) could be oxidized to Mn(III/IV) again. This recycling process was favorable for effective Sb(III) oxidation. Moreover, Sb(V) generated from Sb(III) oxidation by Mn(III/IV) enhanced Mn(II) sorption at the beginning of the process, and thus favored Mn(III/IV) formation, which could further promote Sb(III) oxidation to Sb(V). Overall, this study elucidated the effects of Mn(III/IV) associated with lepidocrocite arisen from Fe(II) oxidation on Sb migration and transformation and revealed the underlying reaction mechanisms, contributing to a better understanding of the geochemical dynamics of Sb.  相似文献   
448.
Methylmercury (MeHg) production in paddy soils and its accumulation in rice raise global concerns since rice consumption has been identified as an important pathway of human exposure to MeHg. Sulfur (S) amendment via fertilization has been reported to facilitate Hg methylation in paddy soils under anaerobic conditions, while the dynamic of S-amendment induced MeHg production in soils with increasing redox potential remains unclear. This critical gap hinders a comprehensive understanding of Hg biogeochemistry in rice paddy system which is characterized by the fluctuation of redox potential. Here, we conducted soil incubation experiments to explore MeHg production in slow-oxidizing paddy soils amended with different species of S and doses of sulfate. Results show that the elevated redox potential (1) increased MeHg concentrations by 10.9%−35.2%, which were mainly attributed to the re-oxidation of other S species to sulfate and thus the elevated abundance of sulfate-reducing bacteria, and (2) increased MeHg phytoavailability by up to 75% due to the reductions in acid volatile sulfide (AVS) that strongly binds MeHg in soils. Results obtained from this study call for attention to the increased MeHg production and phytoavailability in paddy soils under elevated redox potentials due to water management, which might aggravate the MeHg production induced by S fertilization and thus enhance MeHg accumulation in rice.  相似文献   
449.
Mercury (Hg) could be microbially methylated to the bioaccumulative neurotoxin methylmercury (MeHg), raising health concerns. Understanding the methylation of various Hg species is thus critical in predicting the MeHg risk. Among the known Hg species, mercury sulfide (HgS) is the largest Hg reservoir in the lithosphere and has long been considered to be highly inert. However, with advances in the analytical methods of nanoparticles, HgS nanoparticles (HgS NPs) have recently been detected in various environmental matrices or organisms. Furthermore, pioneering laboratory studies have reported the high bioavailability of HgS NPs. The formation, presence, and transformation (e.g., methylation) of HgS NPs are intricately related to several environmental factors, especially dissolved organic matter (DOM). The complexity of the behavior of HgS NPs and the heterogeneity of DOM prevent us from comprehensively understanding and predicting the risk of HgS NPs. To reveal the role of HgS NPs in Hg biogeochemical cycling, research needs should focus on the following aspects: the formation pathways, the presence, and the environmental behaviors of HgS NPs impacted by the dominant influential factor of DOM. We thus summarized the latest progress in these aspects and proposed future research priorities, e.g., developing the detection techniques of HgS NPs and probing HgS NPs in various matrices, further exploring the interactions between DOM and HgS NPs. Besides, as most of the previous studies were conducted in laboratories, our current knowledge should be further refreshed through field observations, which would help to gain better insights into predicting the Hg risks in natural environment.  相似文献   
450.
The presence of SO2 display significant effect on the mercury (Hg) adsorption ability of carbon-based sorbent. Yet the adsorption and oxidation of SO2 on carbon with oxygen group, as well as the roles of different sulfur oxide groups in Hg adsorption have heretofore been unclear. The formation of sulfur oxide groups by SO2 and their effects on Hg adsorption on carbon was detailed examined by the density functional theory. The results show that SO2 can be oxidized into SO3 by oxygen group on carbon surface. Both C-SO2 and C-SO3 can improve Hg adsorption on carbon site, while the promotive effect of C-SO2 is stronger than C-SO3. Electron density difference analyses reveal that sulfur oxide groups enhance the charge transfer ability of surface unsaturated carbon atom, thereby improving Hg adsorption. The experimental results confirm that surface active groups formed by SO2 adsorption is more active for Hg adsorption than the groups generated by SO3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号