Numerous studies had focused on the association between air pollution and health outcomes in recent years. However, little evidence is available on associations between air pollutants and premature rupture of membranes (PROM). Therefore, we performed time-series analysis to evaluate the association between PROM and air pollution. The daily average concentrations of PM2.5, SO2 and NO2 were 54.58 μg/m3, 13.06 μg/m3 and 46.09 μg/m3, respectively, and daily maximum 8-h average O3 concentration was 95.67 μg/m3. The strongest effects of SO2, NO2 and O3 were found in lag4, lag06 and lag09, and an increase of 10 μg/m3 in SO2, NO2 and O3 was corresponding to increase in incidence of PROM of 8.74% (95% CI 2.12–15.79%), 3.09% (95% CI 0.64–5.59%) and 1.68% (95% CI 0.28–3.09%), respectively. There were no significant effects of PM2.5 on PROM. Season-specific analyses found that the effects of PM2.5, SO2 and O3 on PROM were more obvious in cold season, but the statistically significant effect of NO2 was observed in warm season. We also found the modifying effects by maternal age on PROM, and we found that the effects of SO2 and NO2 on PROM were higher among younger mothers (<?35 years) than advanced age mothers (≥?35 years); however,?≥?35 years group were more vulnerable to O3 than?<?35 years group. This study indicates that air pollution exposure is an important risk factor for PROM and we wish this study could provide evidence to local government to take rigid approaches to control emissions of air pollutants.