This paper offers the first study of diurnal variations in the use of an estuarine habitat by Indo-Pacific humpback dolphins. Passive acoustic data loggers were deployed in the Xin Huwei River Estuary, Western Taiwan, from July 2009 to December 2010, to collect biosonar clicks. Acoustic encounter rates of humpback dolphins on the riverside of the estuary changed significantly over the four tidal phases, instead of the two diurnal phases based on the recordings from 268 days. Among the tidal phases, the encounter rates were lowest during ebb tides. Additionally, circling movements associated with the hunt for epipelagic fish significantly changed in temporal and spatial presence over the four tidal phases, matching the overall pattern of encounter rate changes in the focal estuary. Our findings suggest that the occurrence pattern and habitat utilization of humpback dolphins are likely to be influenced by the tidal-driven activity of their epipelagic prey. 相似文献
A low pH, ethanol-type fermentation process was evaluated for wastewater treatment and bio-hydrogen production from acidic beet sugar factory wastewater in a continuous stirred tank reactor (CSTR) with an effective volume of 9.6 L by anaerobic mixed cultures in this present study. After inoculating with aerobic activated sludge and operating at organic loading rate (OLR) of 12 kgCOD?m-3·d-1, HRT of 8h, and temperature of 35°C for 28 days, the CSTR achieved stable ethanol-type fermentation. When OLR was further increased to 18 kgCOD?m-3·d-1 on the 53rd day, ethanol-type fermentation dominant microflora was enhanced. The liquid fermentation products, including volatile fatty acids (VFAs) and ethanol, stabilized at 1493 mg·L-1 in the bioreactor. Effluent pH, oxidation-reduction potential (ORP), and alkalinity ranged at 4.1–4.5, -250–(-290) mV, and 230–260 mgCaCO3?L-1. The specific hydrogen production rate of anaerobic activated sludge was 0.1 L?gMLVSS-1·d-1 and the COD removal efficiency was 45%. The experimental results showed that the CSTR system had good operation stability and microbial activity, which led to high substrate conversion rate and hydrogen production ability. 相似文献
ABSTRACT The drive range of electric vehicle (EV) is one of the major limitations that impedes its universalism. A great deal of research has been devoted to drive range improvement of EV, an accurate and efficiency energy consumption estimation plays a crucial role in these researches. However, the majority of EV’s energy consumption estimation models are based on single motor EV, these models are not suitable for dual-motor EVs, which are composed of more complex transmission mechanisms and multiple operating modes. Thus, an energy consumption estimation model for dual-motor EV is proposed to estimate battery power. This article focuses on studying the operating modes and system efficiency in each operating mode. The limitation of working area of each mode ensures the vehicle dynamic performance, then PSO algorithm is adopted to optimize the torque (speed) distribution between two motors to improve the system efficiency in the coupled driving mode. Finally, the energy consumption estimation model is established by multiple linear regression (MLR). The result shows that the proposed model has a high precision in energy consumption estimation of dual-motor EV. 相似文献
Zero-valent iron (ZVI) was loaded on expanded graphite (EG) to produce a composite material (EG-ZVI) for efficient removal of hexavalent chromium (Cr(VI)). EG and EG-ZVI were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and Brunauer–Emmett–Teller (BET) analysis. EG-ZVI had a high specific surface area and contained sub-micron sized particles of zero-valent iron. Batch experiments were employed to evaluate the Cr(VI) removal performance. The results showed that the Cr(VI) removal rate was 98.80% for EG-ZVI, which was higher than that for both EG (10.00%) and ZVI (29.80%). Furthermore, the removal rate of Cr(VI) by EG-ZVI showed little dependence on solution pH within a pH range of 1–9. Even at pH 11, a Cr(VI) removal rate of 62.44% was obtained after reaction for 1 hr. EG-ZVI could enhance the removal of Cr(VI) via chemical reduction and physical adsorption, respectively. X-ray photoelectron spectroscopy (XPS) was used to analyze the mechanisms of Cr(VI) removal, which indicated that the ZVI loaded on the surface was oxidized, and the removed Cr(VI) was immobilized via the formation of Cr(III) hydroxide and Cr(III)–Fe(III) hydroxide/oxyhydroxide on the surface of EG-ZVI. 相似文献
The use of higher dosage and repeated applications of conventional pesticides have led to the rapid development of insect resistance to pesticide and adverse effects on human health and environment. Accordingly, researchers are prompted to identify an alternative entomotoxic agent for crop protection. Nanocides are being considered as alternatives to conventional insecticides because they are expected to lessen the application rate and reduce the chances of resistance development in pests. In this study, we evaluated the entomotoxic effects of nanosilica on larvae of Plutella xylostella, in a laboratory by using dust spray, larva dipping, leaf dipping, and solution spray methods. Dust treatment showed a more highly significant effect than the other three treatments. The mortality percentage increased up to 58% and 85% at 24 and 72 h after treatment, respectively, when nanosilica was applied at a rate of 1 mg cm?2. In all four bioassays, mortality rate increased with both increased time after nanosilica exposure and increased concentration. Light microscopy and scanning electron microscopy images showed that larval death was due to desiccation, body wall abrasion, and spiracle blockage. These results suggested that nanosilica can be an alternative to conventional pesticides if dust formulation would be properly used. 相似文献
Reactive oxygen species (ROS)-induced DNA damage occurs in heavy metal exposure, but the simultaneous effect on DNA repair is unknown. We investigated the influence of co-exposure of lead (Pb), cadmium (Cd), and mercury (Hg) on 8-hydroxydeoxyguanosine (8-OHdG) and human repair enzyme 8-oxoguanine DNA glycosylase (hOGG1) mRNA levels in exposed children to evaluate the imbalance of DNA damage and repair. Children within the age range of 3–6 years from a primitive electronic waste (e-waste) recycling town were chosen as participants to represent a heavy metal-exposed population. 8-OHdG in the children’s urine was assessed for heavy metal-induced oxidative effects, and the hOGG1 mRNA level in their blood represented the DNA repair ability of the children. Among the children surveyed, 88.14% (104/118) had a blood Pb level >5 μg/dL, 22.03% (26/118) had a blood Cd level >1 μg/dL, and 62.11% (59/95) had a blood Hg level >10 μg/dL. Having an e-waste workshop near the house was a risk factor contributing to high blood Pb (rs = 0.273, p < 0.01), while Cd and Hg exposure could have come from other contaminant sources. Preschool children of fathers who had a college or university education had significantly lower 8-OHdG levels (median 242.76 ng/g creatinine, range 154.62–407.79 ng/g creatinine) than did children of fathers who had less education (p = 0.035). However, we did not observe a significant difference in the mRNA expression levels of hOGG1 between the different variables. Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels (βQ2 = 0.362, 95% CI 0.111–0.542; βQ3 = 0.347, 95% CI 0.103–0.531; βQ4 = 0.314, 95% CI 0.087–0.557). Associations between blood Hg levels and 8-OHdG were less apparent. Compared with low levels of blood Hg (quartile 1), elevated blood Hg levels (quartile 2) were associated with higher 8-OHdG levels (βQ2 = 0.236, 95% CI 0.039–0.406). Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels. 相似文献
Red mud (RM) was used to remediate heavy metal-contaminated soils. Experiments with two different dosages of RM added to soils were carried out in this study. It was found that soil pH increased 0.3 and 0.5 unit with the dosage of 3 and 5% (wt%), respectively. At the dosage of 5%, the highest stabilization efficiencies for Cd, Pb, Cu and Zn reached 67.95, 64.21, 43.73 and 63.73%, respectively. The addition of RM obviously transferred Cd from the exchangeable fraction to the residual fraction. Meanwhile, in comparison with the control (no RM added), it reduced 24.38, 49.20, 19.42 and 8.89% of Cd, Pb, Cu and Zn in wheat grains at the RM addition dosage of 5%, respectively. At the same time, the yield of wheat grains increased 17.81 and 24.66% at the RM addition dosage of 3 and 5%, respectively. Finally, the addition of RM did not change the soil bacterial community. These results indicate that RM has a great potential in stabilizing heavy metals in calcareous agricultural soils.