首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38154篇
  免费   396篇
  国内免费   517篇
安全科学   1170篇
废物处理   1761篇
环保管理   4782篇
综合类   6867篇
基础理论   9702篇
环境理论   23篇
污染及防治   9932篇
评价与监测   2472篇
社会与环境   2134篇
灾害及防治   224篇
  2022年   375篇
  2021年   370篇
  2020年   275篇
  2019年   327篇
  2018年   577篇
  2017年   564篇
  2016年   872篇
  2015年   674篇
  2014年   1022篇
  2013年   2976篇
  2012年   1263篇
  2011年   1708篇
  2010年   1377篇
  2009年   1428篇
  2008年   1686篇
  2007年   1777篇
  2006年   1535篇
  2005年   1324篇
  2004年   1236篇
  2003年   1321篇
  2002年   1180篇
  2001年   1523篇
  2000年   1066篇
  1999年   659篇
  1998年   422篇
  1997年   445篇
  1996年   433篇
  1995年   535篇
  1994年   539篇
  1993年   439篇
  1992年   456篇
  1991年   454篇
  1990年   470篇
  1989年   429篇
  1988年   390篇
  1987年   362篇
  1986年   282篇
  1985年   327篇
  1984年   365篇
  1983年   346篇
  1982年   338篇
  1981年   294篇
  1980年   252篇
  1979年   268篇
  1978年   249篇
  1977年   188篇
  1975年   213篇
  1974年   202篇
  1972年   183篇
  1971年   178篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
991.
The accumulation of excess soil phosphorus (P) in watersheds under intensive animal production has been linked to increases in dissolved P concentrations in rivers and streams draining these watersheds. Reductions in water dissolved P concentrations through very strong P sorption reactions may be obtainable after land application of alum-based drinking water treatment residuals (WTRs). Our objectives were to (i) evaluate the ability of an alum-based WTR to reduce Mehlich-3 phosphorus (M3P) and water-soluble phosphorus (WSP) concentrations in three P-enriched Coastal Plain soils, (ii) estimate WTR application rates necessary to lower soil M3P levels to a target 150 mg kg(-1) soil M3P concentration threshold level, and (iii) determine the effects on soil pH and electrical conductivity (EC). Three soils containing elevated M3P (145-371 mg kg(-1)) and WSP (12.3-23.5 mg kg(-1)) concentrations were laboratory incubated with between 0 and 6% WTR (w w(-1)) for 84 d. Incorporation of WTR into the three soils caused a near linear and significant reduction in soil M3P and WSP concentrations. In two soils, 6% WTR application caused a soil M3P concentration decrease to below the soil P threshold level. An additional incubation on the third soil using higher WTR to soil treatments (10-15%) was required to reduce the mean soil M3P concentration to 178 mg kg(-1). After incubation, most treatments had less than a half pH unit decline and a slight increase in soil EC values suggesting a minimal impact on soil quality properties. The results showed that WTR incorporation into soils with high P concentrations caused larger relative reductions in extractable WSP than M3P concentrations. The larger relative reductions in the extractable WSP fraction suggest that WTR can be more effective at reducing potential runoff P losses than usage as an amendment to lower M3P concentrations.  相似文献   
992.
Diazinon [O,O-diethyl O-2-isopropyl-6-methyl(pyrimidine-4-yl) phosphorothioate] and imidacloprid [1-(1-[6-chloro-3-pyridinyl]methyl)-N-nitro-2-imidazolidinimine] are applied to lawns for insect control simultaneously with nitrogenous fertilizers such as urea, but their potential effect on urease activity and nitrogen availability in turfgrass management has not been evaluated. Urease activity in enzyme assays, washed cell assays, and soil slurries was examined as a function of insecticide concentration. Intact cores from field sites were used to assess the effect of insecticide application on urease activity in creeping bentgrass (Agrostis palustris Huds.) and bluegrass (Poa pratensis L.) sod. Bacterial urease from Bacillus pasteurii and plant urease from jack bean [Canavalia ensiformis (L.) DC.] were unaffected by the insecticides. Both insecticides inhibited the growth of Proteus vulgaris, a urease-producing bacterium, but only diazinon significantly reduced urease activity in washed cells; neither insecticide inhibited urease activity in sonicated cells. Neither diazinon nor imidacloprid inhibited urease activity in Woolper soil (fine, mixed, mesic Typic Argiudoll) slurries, but diazinon slightly inhibited urease activity in Maury soil (fine, mixed, semiactive, mesic Typic Paleudalf) slurries. Imidacloprid had no effect on urease activity in creeping bentgrass or bluegrass sod at up to 10 times the commercial application rate. Diazinon briefly, but significantly, reduced urease activity in bluegrass sod. Co-application of imidacloprid and urea appears to be benign with respect to urease activity in soil and sod. Diazinon, in contrast, appears to have a significant, short-term, inhibitory effect on the microbial urease-producing community, but that effect depends on soil type.  相似文献   
993.
Simple models for phosphorus loss from manure during rainfall   总被引:1,自引:0,他引:1  
Mechanistic, predictive equations for phosphorus (P) transport in runoff from manure-applied fields constitute a critical knowledge gap for developing nonpoint-source pollution models. We derived two simple equations to describe the P release from animal manure during a rainfall event-one based on first-order P desorption kinetics and one based on second-order kinetics. The manure characteristics needed in the two kinetic equations are the maximum amount of water-extractable phosphorus (WEP) and a characteristic desorption time. Water-extractable P can be measured directly but currently the characteristic time can only be obtained by fitting experimental data. In addition, we evaluated two models usually used to estimate P loss from soil, the Elovitch equation and power function, both of which relate P loss to time. The models were tested against previously published data of P release from different manures under laboratory conditions. All equations fit the data well. Of the two kinetic equations, the second-order model showed better agreement with the data than the first-order model; for example, maximum relative differences between the model results and measured data were 2.6 and 4.7%, respectively. The characteristic times varied between 20 min for dairy manure and almost 100 min for poultry manure. The characteristic time did not appear to change with flow rate but decreased with smaller manure aggregates. The parameters for power-function relationships could not be related to measured manure characteristics. These results provide the first step to process-based approximations for predicting P release from manure with time during rainfall shortly after land application, when P losses are the greatest.  相似文献   
994.
A surface drinking water monitoring program for four corn (Zea mays L.) herbicides was conducted during 1995-2001. Stratified random sampling was used to select 175 community water systems (CWSs) within a 12-state area, with an emphasis on the most vulnerable sites, based on corn intensity and watershed size. Finished drinking water was monitored at all sites, and raw water was monitored at many sites using activated carbon, which was shown capable of removing herbicides and their degradates from drinking water. Samples were collected biweekly from mid-March through the end of August, and twice during the off-season. The analytical method had a detection limit of 0.05 microg L(-1) for alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide] and 0.03 microg L(-1) for acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide]. Of the 16528 drinking water samples analyzed, acetochlor, alachlor, atrazine, and metolachlor were detected in 19, 7, 87, and 53% of the samples, respectively. During 1999-2001, samples were also analyzed for the presence of six major degradates of the chloroacetanilide herbicides, which were detected more frequently than their parent compounds, despite having higher detection limits of 0.1 to 0.2 microg L(-1). Overall detection frequencies were correlated with product use and environmental fate characteristics. Reservoirs were particularly vulnerable to atrazine, which exceeded its 3 microg L(-1) maximum contaminant level at 25 such sites during 1995-1999. Acetochlor annualized mean concentrations (AMCs) did not exceed its mitigation trigger (2 microg L(-1)) at any site, and comparisons of observed levels with standard measures of human and ecological hazards indicate that it poses no significant risk to human health or the environment.  相似文献   
995.
ABSTRACT: Water scarcity in the Sevier River Basin in south‐central Utah has led water managers to seek advanced techniques for identifying optimal forecasting and management measures. To more efficiently use the limited quantity of water in the basin, better methods for control and forecasting are imperative. Basin scale management requires advanced forecasts of the availability of water. Information about long term water availability is important for decision making in terms of how much land to plant and what crops to grow; advanced daily predictions of streamflows and hydraulic characteristics of irrigation canals are of importance for managing water delivery and reservoir releases; and hourly forecasts of flows in tributary streams to account for diurnal fluctuations are vital to more precisely meet the day‐to‐day expectations of downstream farmers. A priori streamflow information and exogenous climate data have been used to predict future streamflows and required reservoir releases at different timescales. Data on snow water equivalent, sea surface temperatures, temperature, total solar radiation, and precipitation are fused by applying artificial neural networks to enhance long term and real time basin scale water management information. This approach has not previously been used in water resources management at the basin‐scale and could be valuable to water users in semi‐arid areas to more efficiently utilize and manage scarce water resources.  相似文献   
996.
ABSTRACT: An extensive base of water quality information emphasizing the effects of land use and hydrology was obtained in the karstified Fountain Creek watershed of southwestern Illinois to help resolve local water quality issues. Agrichemicals dominate the loads of most water quality constituents in the streams and shallow karstic ground water. Only calcium (Ca), magnesium (Mg), Aluminum (A1), and sulfate (SO4) ions are predominantly derived from bedrock or soils, while agrichemicals contribute most of the sodium (Na), potassium (K), chlorine (Cl), nitrate (NO3), fluorine (F), phosphorus (P), and atrazine. Concentrations of individual ions correlate with discharge variations in karst springs and surface streams; highly soluble ions supplied by diffuse ground water are diluted by high flows, while less soluble ions increase with flow as they are mobilized from fields to karst conduits under storm conditions. Treated wastewater containing detergent residues dominates the boron load of streams and provides important subordinate loads of several other constituents, including atrazine derived from the Mississippi River via the public water supply. Average surface water concentrations at the watershed outlet closely approximate a 92:8 mixture of karst ground water and treated wastewater, demonstrating the dominance of ground water contributions to streams. Therefore the karst aquifer and watershed streams form a single water quality system that is also affected by wastewater effluent.  相似文献   
997.
ABSTRACT: The concentrations of iron and sulfate in community water supplies are a concern for a number of areas in southwestern Minnesota. This study used the contingent valuation method to determine how much consumers would be willing to pay to improve their drinking water quality. On average, individuals were willing to pay US$5.25 per month (in 1995 U.S. dollars) to reduce the level of iron and US$4.33 per month to reduce the level of sulfate in their water to the USEPA's secondary standards for drinking water quality. Respondents with negative perceptions of their drinking water quality were willing to pay more to improve water quality. The aggregate annual willingness to pay (WTP) for all consumers in community water systems in southwestern Minnesota that were out of compliance with water quality standards were estimated to be US$2.4 million and US$2.0 million (in 1995 dollars) for reducing the levels of iron and sulfate, respectively. Yet the total WTP of consumers who use small community water systems may not be enough to pay the full cost of providing improved water in those systems. Economies of scale in water treatment and difficulties in financing improvements mean that technical innovation, government assistance, or institutional changes may be needed to improve water quality in these areas.  相似文献   
998.
The development, testing, and application of a probabilistic model framework for the light attenuation coefficient for downwelling irradiance (Kd) and Secchi disc transparency (SD) that resolves the effects of several light attenuating constituents, including phytoplankton and nonliving particles (tripton), is documented. The model is consistent with optical theory, partitioning the magnitudes of the light attenuating processes of absorption and scattering according to the contributions of attenuating constituents as simple summations. The probabilistic framework accommodates variations in the character and concentrations of these constituents and ambient conditions during measurements, and recognizes a linear relationship between the magnitudes of absorption and scattering by tripton. The model is tested and applied for a 21 km reach of the Seneca River, New York, that features optical gradients caused by an intervening hypereutrophic lake and dam, and a severe infestation of the exotic zebra mussel. The model is applied to resolve the roles of phytoplankton and tripton in regulating measured longitudinal patterns of SD along the study reach of the river and increases in SD since the zebra mussel invasion, and to predict decreases in Kd since the invasion.  相似文献   
999.
In Massachusetts, the Charles River Watershed Association conducts a regular water quality monitoring and public notification program in the Charles River Basin during the recreational season to inform users of the river's health. This program has relied on laboratory analyses of river samples for fecal coliform bacteria levels, however, results are not available until at least 24 hours after sampling. To avoid the need for laboratory analyses, ordinary least squares (OLS) and logistic regression models were developed to predict fecal coliform bacteria concentrations and the probabilities of exceeding the Massachusetts secondary contact recreation standard for bacteria based on meteorological conditions and streamflow. The OLS models resulted in adjusted R2s ranging from 50 to 60 percent. An uncertainty analysis reveals that of the total variability of fecal coliform bacteria concentrations, 45 percent is explained by the OLS regression model, 15 percent is explained by both measurement and space sampling error, and 40 percent is explained by time sampling error. Higher accuracy in future bacteria forecasting models would likely result from reductions in laboratory measurement errors and improved sampling designs.  相似文献   
1000.
The need for scientifically defensible water quality standards for nonpoint source pollution control continues to be a pressing environmental issue. The probability of impact at differing levels of nonpoint source pollution was determined using the biological response of instream organisms empirically obtained from a statistical survey. A conditional probability analysis was used to calculate a biological threshold of impact as a function of the likelihood of exceeding a given value of pollution metric for a specified geographic area. Uncertainty and natural variability were inherently incorporated into the analysis through the use of data from a probabilistic survey. Data from wadable streams in the mid‐Atlantic area of the U.S. were used to demonstrate the approach. Benthic macroinvertebrate community index values (EPT taxa richness) were used to identify impacted stream communities. Percent fines in substrate (silt/clay fraction, > 0.06 mm) were used as a surrogate indicator for sedimentation. Thresholds of impact due to sedimentation were identified by three different techniques, and were in the range of 12 to 15 percent fines. These values were consistent with existing literature from laboratory and field studies on the impact of sediments on aquatic life in freshwater streams. All results were different from values determined from current regulatory guidance. Finally, it was illustrated how these thresholds could be used to develop criterion for protection of aquatic life in streams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号