首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31111篇
  免费   320篇
  国内免费   333篇
安全科学   952篇
废物处理   1441篇
环保管理   3842篇
综合类   5356篇
基础理论   8095篇
环境理论   18篇
污染及防治   8035篇
评价与监测   2072篇
社会与环境   1773篇
灾害及防治   180篇
  2023年   175篇
  2022年   326篇
  2021年   353篇
  2020年   287篇
  2019年   354篇
  2018年   479篇
  2017年   482篇
  2016年   760篇
  2015年   598篇
  2014年   898篇
  2013年   2430篇
  2012年   1078篇
  2011年   1463篇
  2010年   1175篇
  2009年   1209篇
  2008年   1448篇
  2007年   1495篇
  2006年   1279篇
  2005年   1110篇
  2004年   995篇
  2003年   1081篇
  2002年   958篇
  2001年   1250篇
  2000年   872篇
  1999年   533篇
  1998年   357篇
  1997年   369篇
  1996年   367篇
  1995年   430篇
  1994年   452篇
  1993年   359篇
  1992年   376篇
  1991年   358篇
  1990年   390篇
  1989年   341篇
  1988年   296篇
  1987年   280篇
  1986年   223篇
  1985年   248篇
  1984年   265篇
  1983年   256篇
  1982年   241篇
  1981年   222篇
  1980年   175篇
  1979年   194篇
  1978年   176篇
  1975年   140篇
  1974年   117篇
  1972年   130篇
  1971年   131篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
831.
This paper presents a summary of globalacid deposition flux data taken from a globalassessment report on acid deposition prepared forUNEP/WMO (Whelpdale and Kaiser, 1996). There is a largevariation in the spacial coverage and reliability ofmonitoring around the world. Many more stationsmeasure wet deposition than collect appropriate datafor estimating dry deposition. The widespread regionswith highest precipitation concentrations anddeposition fluxes of sulphate and nitrate coincideclosely with the regions of highest density ofSO2 and NOx precursor emissions occurringprimarily in the mid-latitude, northern hemispherebelt where a large fraction of the worlds fossilfuels is consumed. Organic acids in precipitation makea minor contribution to acidity (<20%) inindustrial regions, but in the rest of the world theyare of same order, or even exceed, inorganic acids.Less is known about dry deposition, but it appears topredominate near strong emission sources with wetdeposition predominating farther downwind. The molarratio of the N/S contribution to acidic deposition isclose to 1.0 over large areas of Europe and NorthAmerica, but is highly variable elsewhere, beinghighest in equatorial regions due to biomass burningand lowest near smelters and other large sources of SO2.  相似文献   
832.

Three-dimensional (3D) models are often utilised to assess the presence of sand and gravel deposits. Expanding these models to provide a better indication of the suitability of the deposit as aggregate for use in construction would be advantageous. This, however, leads to statistical challenges. To be effective, models must be able to reflect the interdependencies between different criteria (e.g. depth to deposit, thickness of deposit, ratio of mineral to waste, proportion of ‘fines’) as well as the inherent uncertainty introduced because models are derived from a limited set of boreholes in a study region. Using legacy borehole data collected during a systematic survey of sand and gravel deposits in the UK, we have developed a 3D model for a 2400 km2 region close to Reading, southern England. In developing the model, we have reassessed the borehole grading data to reflect modern extraction criteria and explored the most suitable statistical modelling technique. The additive log-ratio transform and the linear model of coregionalization have been applied, techniques that have been previously used to map soil texture classes in two dimensions, to assess the quality of sand and gravel deposits in the area. The application of these statistical techniques leads to a model which can be used to generate thousands of plausible realisations of the deposit which fully reflect the extent of model uncertainty. The approach offers potential to improve regional-scale mineral planning by providing an enhanced understanding of sand and gravel deposits and the extent to which they meet current extraction criteria.

  相似文献   
833.
Concentrations of trace metals in the South China Sea (SCS) were determined off the coast of Terengganu during the months of May and November 2007. The concentrations of dissolved and particulate metals were in the range of 0.019–0.194 μg/L and 50–365 μg/g, respectively, for cadmium (Cd), 0.05–0.45 μg/L and 38–3,570 μg/g for chromium (Cr), 0.05–3.54 μg/L and 21–1,947 μg/g for manganese (Mn), and 0.03–0.49 μg/L and 2–56,982 μg/g for lead (Pb). The order of mean log K D found was Cd?>?Cr?>?Pb?>?Mn. The study suggests that the primary sources of these metals are discharges from the rivers which drain into the SCS, in particular the Dungun River, which flows in close proximity to agricultural areas and petrochemical industries. During the northeast monsoon, levels of particulate metals in the bottom water samples near the shore were found to be much higher than during the dry season, the probable result of re-suspension of the metals from the bottom sediments.  相似文献   
834.
The U.S. Department of Energy's (USDOE) Savannah River Site (SRS) is a former nuclear weapon material production and current research facility adjacent to the Savannah River in South Carolina, USA. The purpose of this study was to determine the background radiocesium (137Cs) body burden (e.g., from global fallout) for white-tailed deer (Odocoileus virginianus) inhabiting the SRS. To differentiate what the background burden is for the SRS versus 137Cs obtained from SRS nuclear activities, data were analyzed spatially, temporally and compared to other off-site hunting areas near the SRS. The specific objectives of this study were: to compare SRS and offsite deer herds based on time and space; to interpret comparisons based on how data were collected as well as the effect of environmental and anthropogenic influences; to determine what the ecological half-life/decay rate is for 137Cs in the SRS deer herd; and to give a recommendation to what should be considered the background 137Cs level in the SRS deer herd. Based on the available information and analyses, it is recommended that the determination of what is considered background for the SRS deer herd be derived from data collected from the SRS deer herd itself and not offsite collections for a variety of reasons. Offsite data show extreme variability most likely due to environmental factors such as soil type and land-use patterns (e.g., forest, agriculture, residential activities). This can be seen from results where samples from offsite military bases (Fort Jackson and Fort Stewart) without anthropogenic 137Cs sources were much higher than both the SRS and a nearby (Sandhills) study site. Moreover, deer from private hunting grounds have the potential to be baited with corn, thus artificially lowering their 137Cs body burdens compared to other free-ranging deer. Additionally, sample size for offsite collections were not robust enough to calculate a temporal decay curve with an upper confidence level to determine if the herds are following predicted radioactive decay rates like the SRS or if the variability is due to those points described above. Using mean yearly values, the ecological half-life for 137Cs body burdens for SRS white-tailed deer was determined to be 28.79 years—very close to the 30.2 years physical half-life.  相似文献   
835.
In order to identify the viable option of tillage practices in rice–maize–cowpea cropping system that could cut down soil carbon dioxide (CO2) emission, sustain grain yield, and maintain better soil quality in tropical low land rice ecology soil respiration in terms of CO2 emission, labile carbon (C) pools, water-stable aggregate C fractions, and enzymatic activities were investigated in a sandy clay loam soil. Soil respiration is the major pathway of gaseous C efflux from terrestrial systems and acts as an important index of ecosystem functioning. The CO2–C emissions were quantified in between plants and rows throughout the year in rice–maize–cowpea cropping sequence both under conventional tillage (CT) and minimum tillage (MT) practices along with soil moisture and temperature. The CO2–C emissions, as a whole, were 24 % higher in between plants than in rows, and were in the range of 23.4–78.1, 37.1–128.1, and 28.6–101.2 mg m?2 h?1 under CT and 10.7–60.3, 17.3–99.1, and 17.2–79.1 mg m?2 h?1 under MT in rice, maize, and cowpea, respectively. The CO2–C emission was found highest under maize (44 %) followed by rice (33 %) and cowpea (23 %) irrespective of CT and MT practices. In CT system, the CO2–C emission increased significantly by 37.1 % with respect to MT on cumulative annual basis including fallow. The CO2–C emission per unit yield was at par in rice and cowpea signifying the beneficial effect of MT in maintaining soil quality and reduction of CO2 emission. The microbial biomass C (MBC), readily mineralizable C (RMC), water-soluble C (WSC), and permanganate-oxidizable C (PMOC) were 19.4, 20.4, 39.5, and 15.1 % higher under MT than CT. The C contents in soil aggregate fraction were significantly higher in MT than CT. Soil enzymatic activities like, dehydrogenase, fluorescein diacetate, and β-glucosidase were significantly higher by 13.8, 15.4, and 27.4 % under MT compared to CT. The soil labile C pools, enzymatic activities, and heterotrophic microbial populations were in the order of maize?>?cowpea?>?rice, irrespective of the tillage treatments. Environmental sustainability point of view, minimum tillage practices in rice–maize–cowpea cropping system in tropical low land soil could be adopted to minimize CO2–C emission, sustain yield, and maintain soil health.  相似文献   
836.
Quantification of fluxes of water into and out of terminal lakes like Basaka has fundamental challenges. This is due to the fact that accurate measurement and quantification of most of the parameters of a lake’s hydrologic cycle are difficult. Furthermore, quantitative understanding of the hydrologic systems and hence, the data-intensive modelling is difficult in developing countries like Ethiopia due to limitation of sufficient recorded data. Therefore, formulation of a conceptual water balance model is extremely important as it presents a convenient analytical tool with simplified assumptions to simulate the magnitude of unknown fluxes. In the current study, a conceptual lake water balance model was systematically formulated, solved, calibrated, and validated successfully. Then, the surface water and groundwater interaction was quantified, and a mathematical relationship developed. The overall agreement between the observed and simulated lake stage at monthly time step was confirmed based on the standard performance parameters (R 2, MAE, RMSE, E f). The result showed that hydrological water balance of the lake is dominated by the groundwater (GW) component. The net GW flux in recent period (post-2000s) accounts about 56 % of the total water inflow. Hence, GW plays a leading role in the hydrodynamics and existence of Lake Basaka and is mostly responsible for the expansion of the lake. Thus, identification of the potential sources/causes for the GW flux plays a leading role in order to limit the further expansion of the lake. Measurement of GW movement and exchange in the area is a high priority for future research.  相似文献   
837.
This paper deals with the solid waste image detection and classification to detect and classify the solid waste bin level. To do so, Hough transform techniques is used for feature extraction to identify the line detection based on image’s gradient field. The feedforward neural network (FFNN) model is used to classify the level content of solid waste based on learning concept. Numbers of training have been performed using FFNN to learn and match the targets of the testing images to compute the sum squared error with the performance goal met. The images for each class are used as input samples for classification. Result from the neural network and the rules decision are used to build the receiver operating characteristic (ROC) graph. Decision graph shows the performance of the system waste system based on area under curve (AUC), WS-class reached 0.9875 for excellent result and WS-grade reached 0.8293 for good result. The system has been successfully designated with the motivation of solid waste bin monitoring system that can applied to a wide variety of local municipal authorities system.  相似文献   
838.
Concentrations of Cu, Zn, Cd, Pb, Ni, Co, Fe, Mn, and Hg were measured successively in water, sediments, and six macroalgal species belonging to three algal classes during 3 years (2008–2010) from Abu Qir Bay, Alexandria, Egypt: Chlorophyceae (Enteromorpha compressa, Ulva fasciata), Phaeophyceae (Padina boryana), and Rhodophyceae (Jania rubens, Hypnea musciformis, Pterocladia capillacea). The study aimed to assess the bioaccumulation potential of the seaweeds, as well as to evaluate the extent of heavy metal contamination in the selected study site. Metals were analyzed using atomic absorption spectrophotometry coupled with MH-10 hydride system. The obtained data showed that the highest mean concentrations of Cu, Zn, Fe, and Mn were recorded in E. compressa; Cd, Ni, and Hg exhibited their highest mean concentrations in P. boryana, while Pb and Co were found in J. rubens. Abundance of the heavy metals in the algal species was as follow: Fe?>?Mn?>?Zn?>?Pb?>?Ni?>?Co?>?Cu?>?Cd?>?Hg. E. compressa showed the maximum metal pollution index (MPI) which was 11.55. Bioconcentration factor (BCF) for the metals in algae was relatively high with a maximum value for Mn. The Tomlinson pollution load index (PLI) values for the recorded algal species were low, which ranged between 1.00 in P. boryana and 2.72 in E. compressa. Enrichment factors for sediments were low fluctuating between 0.43 for Hg to 2.33 for Mn. Accordingly, the green alga E. compressa, brown alga P. boryana, and red alga J. rubens can be nominated as bioindicators. Based on MPI and PLI indices, Abu Qir Bay in the present study is considered as low-contaminated area.  相似文献   
839.
As long as lakes and reservoirs are an important component of the global carbon cycle, monitoring of their metabolism is required, especially in the tropics. In particular, the response of deep reservoirs to water-level fluctuations (WLF) is an understudied field. Here, we study community metabolism through oxygen dynamics in a deep monomictic reservoir where high WLF (~10 m) have recently occurred. Simultaneous monitoring of environmental variables and zooplankton dynamics was used to assess the effects of WLF on the metabolism of the eutrophic Valle de Bravo (VB) reservoir, where cyanobacteria blooms are frequent. Mean gross primary production (P g) was high (2.2 g C m?2 day?1), but temporal variation of P g was low except for a drastic reduction during circulation attributed to zooplankton grazing. The trophogenic layer showed net autotrophy on an annual basis, but turned to net heterotrophy during mixing, and furthermore when the whole water-column oxygen balance was calculated, considering the aphotic respiration (R aphotic). The high total respiration resulting (3.1 g C m?2 day?1) is considered to be partly due to mixing enhanced by WLF. Net ecosystem production was equivalent to a net export of 3.4 mg CO2?m?2 day?1 to the atmosphere. Low water levels are posed to intensify boundary-mixing events driven by the wind during the stratification in VB. Long-term monitoring showed changes in the planktonic community and a strong silicon decrease that matched with low water-level periods. The effects of low water-level on metabolism and planktonic community in VB suggest that water-level manipulation could be a useful management tool to promote phytoplankton groups other than cyanobacteria.  相似文献   
840.
A study was carried out in the coastal waters of Kalpakkam, southeast coast of India, to find out the seasonal variation in dinoflagellate community structure. Samples were collected for a period of 4 years during 2006–2010. During the study 69 species of dinoflagellates were encountered among which Ceratium furca and Prorocentrum micans were most common during all the seasons. Genus Ceratium was found to be the most diverse one with 23 species which was followed by genus Protoperidinium with 16 species. Of 69 species, 27 species were considered as dominant based on their abundance during pre-monsoon (PRM), monsoon (MON) and post-monsoon (POM) periods. Relatively high density and diversity of dinoflagellates were encountered during the PRM period as compared to the MON and POM periods. Abundance pattern of dinoflagellates for three seasons showed the following trend: PRM?>?POM?>?MON. Salinity showed a positive correlation with dinoflagellate community showing its importance in dinoflagellate growth and sustenance. Ammonia and phosphate developed negative correlation with dinoflagellate density indicating the utilization of these nutrients by the dinoflagellate community. The presence of three dinoflagellate associations, broadly representing the three seasons experienced at this location, was evident from the cluster analysis. The study revealed presence of 19 relatively abundant toxic/red tide forming dinoflagellate species in the coastal waters of Kalpakkam.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号