全文获取类型
收费全文 | 31106篇 |
免费 | 320篇 |
国内免费 | 333篇 |
专业分类
安全科学 | 952篇 |
废物处理 | 1439篇 |
环保管理 | 3840篇 |
综合类 | 5356篇 |
基础理论 | 8095篇 |
环境理论 | 18篇 |
污染及防治 | 8031篇 |
评价与监测 | 2075篇 |
社会与环境 | 1773篇 |
灾害及防治 | 180篇 |
出版年
2023年 | 175篇 |
2022年 | 327篇 |
2021年 | 354篇 |
2020年 | 287篇 |
2019年 | 354篇 |
2018年 | 478篇 |
2017年 | 482篇 |
2016年 | 759篇 |
2015年 | 598篇 |
2014年 | 899篇 |
2013年 | 2431篇 |
2012年 | 1078篇 |
2011年 | 1464篇 |
2010年 | 1175篇 |
2009年 | 1209篇 |
2008年 | 1447篇 |
2007年 | 1494篇 |
2006年 | 1279篇 |
2005年 | 1109篇 |
2004年 | 994篇 |
2003年 | 1081篇 |
2002年 | 958篇 |
2001年 | 1248篇 |
2000年 | 871篇 |
1999年 | 532篇 |
1998年 | 357篇 |
1997年 | 369篇 |
1996年 | 367篇 |
1995年 | 430篇 |
1994年 | 452篇 |
1993年 | 359篇 |
1992年 | 376篇 |
1991年 | 358篇 |
1990年 | 390篇 |
1989年 | 341篇 |
1988年 | 296篇 |
1987年 | 280篇 |
1986年 | 223篇 |
1985年 | 248篇 |
1984年 | 265篇 |
1983年 | 256篇 |
1982年 | 241篇 |
1981年 | 222篇 |
1980年 | 175篇 |
1979年 | 194篇 |
1978年 | 176篇 |
1975年 | 140篇 |
1974年 | 117篇 |
1972年 | 130篇 |
1971年 | 131篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
481.
In order to study the stability of landfilled heavy metals, landfill material from a combined household and industrial waste landfill was aerated for 14 months to simulate the natural ageing processes as air slowly begins to penetrate the landfill mass. During aeration, the pH of the landfill material decreased from around 8.6 to 8.1 and the carbon content also decreased. In order to investigate the possible fate of metals in ageing landfills, a four-stage sequential extraction technique was applied. The ability of the materials to bind metal ions by electrostatic attractions and to form stronger complexes was studied separately. The amount of exchangeable cations, the capacity to bind metal ions by electrostatic attraction and the capacity of the landfill material to complex copper ions were increased by the aeration process. However, results from the sequential analysis showed an increased solubility of sulphur and some metals (Cd, Co, Cu, Ni and Zn). Equilibrium speciation models (Medusa) indicated that the organic matter deposit had a significant capacity to bind metal ions provided that pH was sufficiently high. However, as carbonates are consumed over time, the risk for metal mobility increases. Therefore, the landfills can become an environmental risk, depending on variations in the solubility of metal ions due to changes in pH, redox status and the availability of organic material. 相似文献
482.
The aim of this research activity is to investigate the environmental impact of different thermal treatments of waste electric and electronic equipment (WEEE), applying a life cycle assessment methodology. Two scenarios were assessed, which both allow the recovery of bromine: (A) the co-combustion of WEEE and green waste in a municipal solid waste combustion plant, and (B) the staged-gasification of WEEE and combustion of produced syngas in gas turbines. Mass and energy balances on the two scenarios were set and the analysis of the life cycle inventory and the life cycle impact assessment were conducted. Two impact assessment methods (Ecoindicator 99 and Impact 2002+) were slightly modified and then used with both scenarios. The results showed that scenario B (staged-gasification) had a potentially smaller environmental impact than scenario A (co-combustion). In particular, the thermal treatment of staged-gasification was more energy efficient than co-combustion, and therefore scenario B performed better than scenario A, mainly in the impact categories of "fossil fuels" and "climate change". Moreover, the results showed that scenario B allows a higher recovery of bromine than scenario A; however, Br recovery leads to environmental benefits for both the scenarios. Finally the study demonstrates that WEEE thermal treatment for energy and matter recovery is an eco-efficient way to dispose of this kind of waste. 相似文献
483.
C. Albano N. Camacho M. Hernndez A. Matheus A. Gutirrez 《Waste management (New York, N.Y.)》2009,29(10):2707-2716
The goal of this work was to study the mechanical behavior of concrete with recycled Polyethylene Therephtalate (PET), varying the water/cement ratio (0.50 and 0.60), PET content (10 and 20 vol%) and the particle size. Also, the influence of the thermal degradation of PET in the concrete was studied, when the blends were exposed to different temperatures (200, 400, 600 °C). Results indicate that PET-filled concrete, when volume proportion and particle size of PET increased, showed a decrease in compressive strength, splitting tensile strength, modulus of elasticity and ultrasonic pulse velocity; however, the water absorption increased. On the other hand, the flexural strength of concrete-PET when exposed to a heat source was strongly dependent on the temperature, water/cement ratio, as well as on the PET content and particle size. Moreover, the activation energy was affected by the temperature, PET particles location on the slabs and water/cement ratio. 相似文献
484.
Fly ash residues from combustion often do not meet the criteria neither for reuse as construction materials nor landfilling as non-hazardous waste, mainly because of the high concentration of heavy metals and chlorides. This work aimed to technically evaluate an innovative wet treatment process for the extraction of chloride (Cl?), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) from fly ashes from a municipal solid waste incineration (MSWI) plant and from a straw combustion (SC) facility. Factors investigated were liquid/solid (L/S) ratio, full carbonation (CO2 treatment), influence of pH and leaching time, using a two-level full factorial design. The most significant factor for all responses was low pH, followed by L/S ratio. Multiple linear regression models describing the variation in extraction data had R2 values ranging from 58% to 98%. An optimization of the element extraction models was performed and a set of treatment conditions is suggested. 相似文献
485.
Even when policies of waste prevention, re-use and recycling are prioritised a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is carried out by conducting detailed energy system analyses of the present as well as a potential future Danish energy system with a large share of combined heat and power as well as wind power. The study shows potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together the two solutions may contribute to alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority to combined heat and power plants with high electric efficiency. 相似文献
486.
Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO2-eq. can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83–95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the “Avoidance of landfill gas emissions by in situ aeration of landfills” (UNFCCC, 2009). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction. 相似文献
487.
J. P. Lopez J. Girones J. A. Mendez J. Puig M. A. Pelach 《Journal of Polymers and the Environment》2012,20(1):96-103
The effect of multiple injection-moulding reprocessing of three biodegradable matrices on their mechanical properties, melt
flow rate, molecular weight, phase transition temperatures and degradation temperature is presented. It has been found that,
with successive reprocessing, tensile, flexural and impact strength decreased. Drop in mechanical properties has been assigned
to degradation of the matrices, as corroborated by melt flow and molecular weight analysis. Although reprocessing did not
significantly affect the glass transition, it diminished the melting point and degradation temperature of polymers. Results
indicate that neat PLLA can be recycled for up to five times without suffering a drastic loss in mechanical and thermal properties.
The aliphatic polyester Mater-Bi TF01U/095R can be recycled for up to 10 times, whilst starch-based Mater-Bi YI014U/C wastes
should be destined to composting, since its recyclability is very poor. The effect of reprocessing on composites reinforced
with chemithermomechanical pulp (CTMP) followed the tendencies observed for the neat matrices. Whilst CTMP-fibres behave mainly
as filler in PLLA composites, reinforced thermoplastic starch-based composites presented enhanced mechanical properties and
recyclability. 相似文献
488.
Novel lightweight composite foams based on recycled polypropylene reinforced with cellulosic fibres obtained from agricultural residues were prepared and characterized. These composites, initially prepared by melt-mixing recycled polypropylene with variable fibre concentrations (10-25 wt.%), were foamed by high-pressure CO2 dissolution, a clean process which avoids the use of chemical blowing agents. With the aim of studying the influence of the fibre characteristics on the resultant foams, two chemical treatments were applied to the barley straw in order to increase the α-cellulose content of the fibres. The chemical composition, morphology and thermal stability of the fibres and composites were analyzed. Results indicate that fibre chemical treatment and later foaming of the composites resulted in foams with characteristic closed-cell microcellular structures, their specific storage modulus significantly increasing due to the higher stiffness of the fibres. The addition of the fibres also resulted in an increase in the glass transition temperature of PP in both the solid composites and more significantly in the foams. 相似文献
489.
490.
Steven M. Lichten 《补救:环境净化治理成本、技术与工艺杂志》1993,4(1):1-22
Decisions made during the course of investigating and remediating a contaminated site, as well as the technology used, are most often driven exclusively by physical, technical, and health-based concerns. Additionally, in both determining and managing the potential risks posed by a remediation project, the focus tends to be placed primarily on health risks. However, a contaminated site and its remediation are neither static over time nor do they exist in a vacuum. Other elements of risk associated with the site and remedial activities include continuing regulatory oversight and compliance, public and agency relations, remedial technology costs, current and future land-use issues, and future technological/regulatory risks. Agencies, consultants, contractors, and facility management must consider these other non-health-related elements of risk. Additionally, efforts made to communicate a project's decisions, technologies, and risks are often made in a defensive or reactive posture, resulting in ineffective communication and an alienated, angry, or distrustful public. Proactive risk communication, as well as public involvement in the remedial process, are critical to the success of any remedial activity. 相似文献