首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   0篇
  国内免费   1篇
安全科学   4篇
环保管理   24篇
综合类   2篇
基础理论   162篇
污染及防治   3篇
灾害及防治   1篇
  2014年   20篇
  2013年   19篇
  2012年   3篇
  2011年   10篇
  2010年   20篇
  2009年   14篇
  2008年   12篇
  2007年   14篇
  2006年   12篇
  2005年   13篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   6篇
  1999年   4篇
  1997年   2篇
  1996年   2篇
  1995年   6篇
  1993年   1篇
  1992年   5篇
  1991年   5篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1985年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有196条查询结果,搜索用时 31 毫秒
111.
Abstract: Structured decision making and value‐of‐information analyses can be used to identify robust management strategies even when uncertainty about the response of the system to management is high. We used these methods in a case study of management of the non‐native invasive species gray sallow willow (Salix cinerea) in alpine Australia. Establishment of this species is facilitated by wildfire. Managers are charged with developing a management strategy despite extensive uncertainty regarding the frequency of fires, the willow's demography, and the effectiveness of management actions. We worked with managers in Victoria to conduct a formal decision analysis. We used a dynamic model to identify the best management strategy for a range of budgets. We evaluated the robustness of the strategies to uncertainty with value‐of‐information analyses. Results of the value‐of‐information analysis indicated that reducing uncertainty would not change which management strategy was identified as the best unless budgets increased substantially. This outcome suggests there would be little value in implementing adaptive management for the problem we analyzed. The value‐of‐information analyses also highlighted that the main driver of gray sallow willow invasion (i.e., fire frequency) is not necessarily the same factor that is most important for decision making (i.e., willow seed dispersal distance). Value of‐information analyses enables managers to better target monitoring and research efforts toward factors critical to making the decision and to assess the need for adaptive management.  相似文献   
112.
Public agencies sometimes seek outside guidance when capacity to achieve their mission is limited. Through a cooperative agreement and collaborations with the U.S. National Park Service (NPS), we developed recommendations for a conservation program for migratory species. Although NPS manages ~36 million hectares of land and water in 401 units, there is no centralized program to conserve wild animals reliant on NPS units that also migrate hundreds to thousands of kilometers beyond parks. Migrations are imperiled by habitat destruction, unsustainable harvest, climate change, and other impediments. A successful program to counter these challenges requires public support, national and international outreach, and flourishing migrant populations. We recommended two initial steps. First, in the short term, launch or build on a suite of projects for high‐profile migratory species that can serve as proof to demonstrate the centrality of NPS units to conservation at different scales. Second, over the longer term, build new capacity to conserve migratory species. Capacity building will entail increasing the limited knowledge among park staff about how and where species or populations migrate, conditions that enable migration, and identifying species’ needs and resolving them both within and beyond parks. Building capacity will also require ensuring that park superintendents and staff at all levels support conservation beyond statutory borders. Until additional diverse stakeholders and a broader American public realize what can be lost and do more to protect it and engage more with land management agencies to implement actions that facilitate conservation, long distance migrations are increasingly likely to become phenomena of the past. Optimismo y Retos para la Conservación Científicamente Basada de Especies Migratorias Dentro y Fuera de Parques Nacionales de E.U.A.  相似文献   
113.
Biodiversity indices often combine data from different species when used in monitoring programs. Heuristic properties can suggest preferred indices, but we lack objective ways to discriminate between indices with similar heuristics. Biodiversity indices can be evaluated by determining how well they reflect management objectives that a monitoring program aims to support. For example, the Convention on Biological Diversity requires reporting about extinction rates, so simple indices that reflect extinction risk would be valuable. We developed 3 biodiversity indices that are based on simple models of population viability that relate extinction risk to abundance. We based the first index on the geometric mean abundance of species and the second on a more general power mean. In a third index, we integrated the geometric mean abundance and trend. These indices require the same data as previous indices, but they also relate directly to extinction risk. Field data for butterflies and woodland plants and experimental studies of protozoan communities show that the indices correlate with local extinction rates. Applying the index based on the geometric mean to global data on changes in avian abundance suggested that the average extinction probability of birds has increased approximately 1% from 1970 to 2009. Conectando Índices para el Monitoreo de la Biodiversidad con la Teoría de Riesgo de Extinción  相似文献   
114.
Much of the biodiversity‐related climate change impacts research has focused on the direct effects to species and ecosystems. Far less attention has been paid to the potential ecological consequences of human efforts to address the effects of climate change, which may equal or exceed the direct effects of climate change on biodiversity. One of the most significant human responses is likely to be mediated through changes in the agricultural utility of land. As farmers adapt their practices to changing climates, they may increase pressure on some areas that are important to conserve (conservation lands) whereas lessening it on others. We quantified how the agricultural utility of South African conservation lands may be altered by climate change. We assumed that the probability of an area being farmed is linked to the economic benefits of doing so, using land productivity values to represent production benefit and topographic ruggedness as a proxy for costs associated with mechanical workability. We computed current and future values of maize and wheat production in key conservation lands using the DSSAT4.5 model and 36 crop‐climate response scenarios. Most conservation lands had, and were predicted to continue to have, low agricultural utility because of their location in rugged terrain. However, several areas were predicted to maintain or gain high agricultural utility and may therefore be at risk of near‐term or future conversion to cropland. Conversely, some areas were predicted to decrease in agricultural utility and may therefore prove easier to protect from conversion. Our study provides an approximate but readily transferable method for incorporating potential human responses to climate change into conservation planning. Uso de Cambios en la Utilidad Agrícola para Cuantificar Riesgos Futuros para la Conservación Inducidos por el Clima  相似文献   
115.
116.
Abstract:  Rapid biodiversity assessment and conservation planning require the use of easily quantified and estimated surrogates for biodiversity. Using data sets from Québec and Queensland, we applied four methods to assess the extent to which environmental surrogates can represent biodiversity components: (1) surrogacy graphs; (2) marginal representation plots; (3) Hamming distance function; and (4) Syrjala statistical test for spatial congruence. For Québec we used 719 faunal and floral species as biodiversity components, and for Queensland we used 2348 plant species. We used four climatic parameter types (annual mean temperature, minimum temperature during the coldest quarter, maximum temperature during the hottest quarter, and annual precipitation), along with slope, elevation, aspect, and soil types, as environmental surrogates. To study the effect of scale, we analyzed the data at seven spatial scales ranging from 0.01° to 0.10° longitude and latitude. At targeted representations of 10% for environmental surrogates and biodiversity components, all four methods indicated that using a full set of environmental surrogates systematically provided better results than selecting areas at random, usually ensuring that ≥90% of the biodiversity components achieved the 10% targets at scales coarser than 0.02°. The performance of surrogates improved with coarser spatial resolutions. Thus, environmental surrogate sets are useful tools for biodiversity conservation planning. A recommended protocol for the use of such surrogates consists of randomly selecting a set of areas for which distributional data are available, identifying an optimal surrogate set based on these areas, and subsequently prioritizing places for conservation based on the optimal surrogate set.  相似文献   
117.
118.
119.
Wildlife crossing structures are one solution to mitigating the fragmentation of wildlife populations caused by roads, but their effectiveness in providing connectivity has only been superficially evaluated. Hundreds of grizzly (Ursus arctos) and black bear (Ursus americanus) passages through under and overpasses have been recorded in Banff National Park, Alberta, Canada. However, the ability of crossing structures to allow individual and population‐level movements across road networks remains unknown. In April 2006, we initiated a 3‐year investigation into whether crossing structures provide demographic connectivity for grizzly and black bears in Banff National Park. We collected hair with multiple noninvasive methods to obtain genetic samples from grizzly and black bears around the Bow Valley. Our objectives were to determine the number of male and female grizzly and black bears that use crossing structures; examine spatial and temporal patterns of crossings; and estimate the proportions of grizzly and black bear populations in the Bow Valley that use crossing structures. Fifteen grizzly (7 female, 8 male) and 17 black bears (8 female, 9 male) used wildlife crossing structures. The number of individuals detected at wildlife crossing structures was highly correlated with the number of passages in space and time. Grizzly bears used open crossing structures (e.g., overpasses) more often than constricted crossings (e.g., culverts). Peak use of crossing structures for both bear species occurred in July, when high rates of foraging activity coincide with mating season. We compared the number of bears that used crossings with estimates of population abundance from a related study and determined that substantial percentages of grizzly (15.0% in 2006, 19.8% in 2008) and black bear (17.6% in 2006, 11.0% in 2008) populations used crossing structures. On the basis of our results, we concluded wildlife crossing structures provide demographic connectivity for bear populations in Banff National Park. Conectividad Demográfica para Poblaciones de Úrsidos en Estructuras para Cruce de Vida Silvestre en el Parque Nacional Banff  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号