首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
环保管理   4篇
基础理论   32篇
  2014年   4篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2009年   4篇
  2008年   7篇
  2007年   2篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1990年   1篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
排序方式: 共有36条查询结果,搜索用时 93 毫秒
21.
Abstract:  Stochastic variation of sex ratio has long been appreciated as a potential factor driving small populations to extinction, but it is not the only source of sex-ratio bias in small populations. We examined whether some consequences of sex allocation could affect extinction risk in small populations of size-dimorphic birds such as eagles. We report variations in sex ratio at fledging from a long-term study of a declining population of Spanish Imperial Eagles ( Aquila adalberti ). Nestling sex-ratio deviation apparently was mediated by age of breeders, whereas territory quality had no obvious effect. Adult–adult pairs produced the same proportion of both sexes in high- or low-density situations, but pairs with at least one member in nonadult plumage class produced more males. As the population declined over a period of years, the proportion of breeders with immature plumage increased; consequently, the proportion of fledgling males increased. However, when population density was high, the proportion of breeders with immature plumage decreased and more female offspring were produced. This relationship between population density, composition of breeder age, and fledgling sex ratios allowed us to make predictions of extinction risk due to nonstochastic deviations of sex ratio in small, declining populations. In the study population, on the basis of the Vortex simulation results, an estimated reduction of 42.5% in predicted mean time to extinction was attributed solely to biased sex ratio.  相似文献   
22.
Abstract: Given the conflict with human interests that in many cases results in the extirpation of large carnivores, acceptance of their reintroduction is a considerable challenge. By the 1980s Mexican wolves (Canis lupus) were extinct in the wild. In 1998 a population was reintroduced in the Blue Range Mountains of New Mexico (U.S.A.). Efforts to reintroduce the species in Mexico have been ongoing since the late 1980s. Four teams working independently identified 6 areas in northern Mexico in the historic range of Mexican wolves, where reintroductions could potentially be successful. Each team used different methods and criteria to identify the areas, which makes it difficult to prioritize among these areas. Therefore, members of the different teams worked together to devise criteria for use in identifying priority areas. They identified areas with high, intermediate, and low potential levels of conflict between wolves and humans. Areas with low potential conflict had larger buffers (i.e., distance from human settlement to areas suitable for wolves) around human settlements than high‐ and intermediate‐conflict areas and thus were thought most appropriate for the first reintroduction. High‐conflict areas contained habitat associated with wolf presence, but were closer to human activity. The first reintroduction of Mexican wolves to Mexico occurred in October 2011 in one of the identified low‐conflict areas. The identification of suitable areas for reintroduction represents a crucial step in the process toward the restoration of large carnivores. Choice of the first reintroduction area can determine whether the reintroduction is successful or fails. A failure may preclude future reintroduction efforts in a region or country.  相似文献   
23.
This paper describes the main conclusions of the Interregional Symposium on Improved Efficiency in Water Resources Management: Follow-up to Mar del Plata, which was held in New York in January 1987. The group of 70 water specialists came up with suggestions for governments and international organizations to speed up water resources development in the coming decade. Major issues covered were efficiency in the management of financial resources; human resources; technology; water quality; and natural hazards, consisting of floods and droughts.  相似文献   
24.
25.
26.
Bushmeat markets exist in many countries in West and Central Africa, and data on species sold can be used to detect patterns of wildlife trade in a region. We surveyed 89 markets within the Cross–Sanaga rivers region, West Africa. In each market, we counted the number of carcasses of each taxon sold. During a 6‐month period (7594 market days), 44 mammal species were traded. Thirteen species were on the International Union for Conservation of Nature (IUCN) Red List or protected under national legislation, and at least 1 threatened species was traded in 88 of the 89 markets. We used these data to identify market groups that traded similar species assemblages. Using cluster analyses, we detected 8 market groups that were also geographically distinct. Market groups differed in the diversity of species, evenness of species, and dominant, prevalent, and characteristic species traded. We mapped the distribution of number of threatened species traded across the study region. Most threatened species were sold in markets nearest 2 national parks, Korup National Park in Cameroon and Cross River in Nigeria. To assess whether the threatened‐species trade hotspots coincided with the known ranges of these species, we mapped the overlap of all threatened species traded. Markets selling more threatened species overlapped with those regions that had higher numbers of these. Our study can provide wildlife managers in the region with better tools to discern zones within which to focus policing efforts and reduce threats to species that are threatened by the bushmeat trade. Mapeo de Sitios Críticos para Especies Amenazadas Comercializadas en Mercados de Vida Silvestre en la Región de los Ríos Cross‐Sanaga  相似文献   
27.
28.
29.
30.
Optimization of the Resources Management in Fighting Wildfires   总被引:1,自引:0,他引:1  
Wildfires lead to important economic, social, and environmental losses, especially in areas of Mediterranean climate where they are of a high intensity and frequency. Over the past 30 years there has been a dramatic surge in the development and use of fire spread models. However, given the chaotic nature of environmental systems, it is very difficult to develop real-time fire-extinguishing models. This article proposes a method of optimizing the performance of wildfire fighting resources such that losses are kept to a minimum. The optimization procedure includes discrete simulation algorithms and Bayesian optimization methods for discrete and continuous problems (simulated annealing and Bayesian global optimization). Fast calculus algorithms are applied to provide optimization outcomes in short periods of time such that the predictions of the model and the real behavior of the fire, combat resources, and meteorological conditions are similar. In addition, adaptive algorithms take into account the chaotic behavior of wildfire so that the system can be updated with data corresponding to the real situation to obtain a new optimum solution. The application of this method to the Northwest Forest of Madrid (Spain) is also described. This application allowed us to check that it is a helpful tool in the decision-making process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号