首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   0篇
  国内免费   2篇
安全科学   11篇
废物处理   17篇
环保管理   21篇
综合类   10篇
基础理论   29篇
环境理论   1篇
污染及防治   71篇
评价与监测   24篇
社会与环境   11篇
  2023年   4篇
  2022年   19篇
  2021年   14篇
  2020年   10篇
  2019年   6篇
  2018年   8篇
  2017年   12篇
  2016年   9篇
  2015年   6篇
  2014年   5篇
  2013年   38篇
  2012年   10篇
  2011年   6篇
  2010年   4篇
  2009年   4篇
  2008年   12篇
  2007年   5篇
  2006年   4篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1993年   1篇
  1983年   1篇
  1982年   1篇
  1975年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
61.
The present study investigated the phytoremediation of simulated wastewater, mimicking wastewater generated by industrial processes containing significant amounts of toxic heavy metal ions. The wetland plant Ludwigia stolonifera was used to study its efficiency in the removal of the three toxic metals Pb, Cd and Cr. Survivability of the plant has been studied in solutions at different concentrations of three metals separately or as a mixture, and the accumulation of these toxic metals for a prolonged period has been evaluated. The plant performed very successful in eliminating Cd, Cr and Pb as single metals of up to 65%, 97% and 99%, respectively, within four days. In addition, the trend of metal uptake revealed negligible dependence on different masses of plant and on various pH-values. L. stolonifera has high potential in eliminating various toxic pollutants from aquatic environments.  相似文献   
62.
Thirty-four analogs with variable antifungal activity were selected to develop models for establishing three-dimensional quantitative structure-activity relationships (3D-QSAR). Comparative molecular field analysis (CoMFA) and comparative similarity indices analyses (CoMSIA) were conducted on the group of analogs to determine the structural requirements for selectivity and potency in inhibiting biofilm formation and fungal growth. The best CoMFA model predicted a q2 = 0.5 and an r2 = 0.991, and revealed that electrostatic properties play a significant role in potency and selectivity. The best CoMSIA model combined electrostatics, hydrogen bond acceptor and donor, and hydrophobic fields with a q2 = 0.664 r2 = 0.952, S = 0.099, and F = 139.892. The analyses of the contour maps from both models provide significant insight into the structural necessities for a potent compound. Therefore, manipulating various chemical properties of the substituted groups on the farnesol chain can be used to enhance the fungicidal properties of the target compound.  相似文献   
63.
Thirty N-acyl homoserine lactone (AHL) analogs with variable antibacterial activity and displaying inhibition of biofilm formation were selected to develop models for establishing three-dimensional quantitative structure-activity relationships (3D-QSAR). Comparative molecular field analysis (CoMFA) and comparative similarity indices analysis (CoMSIA) were carried out to determine the optimum structural requirements for selectivity and potency of quorum-sensing and bacterial biofilm inhibition. The best CoMFA model predicted a q2 value of 0.519 and an r2 value of 0.984 and revealed that electrostatic and steric properties play a significant role in potency and selectivity. The CoMSIA model predicted a q2 value of 0.411 and an r2 value of 0.938 based on a combination of steric, electrostatic, and hydrophobic effects. The analysis of the contour maps from each model provide insight into the structural requirements for increasing the activity of a compound. Consequently, manipulating the chemical and physical properties of substituted acyl groups on the homoserine lactone moiety can provide important information toward enhancing the antibacterial properties of the target chemical compound.  相似文献   
64.
Waste cooking oil is a potential substitution of refined vegetable oil for the production of biodiesel due to the low cost of raw material and for solving their disposal problem. In this study, optimization of esterification process of free fatty acids in artificially acidified soybean oil with oleic acid has been carried out using methanol as an agent and ion exchange resin as a heterogeneous catalyst. The esterification reaction has been investigated based on the mass balance of the developed model. The model has been validated against experimental data and effects of temperature and catalyst weight have been analyzed. Thereafter, optimization process has been fulfilled for two different objective functions as conversion of acid oil and benefit. Optimization results indicated that the maximum conversion of acid is 95.95%, which is achievable at 4.48-g catalyst loading and reaction temperature of 120°C. Maximum benefit was obtained as US$0.057 per batch of reaction at a catalyst amount of 1 g and temperature of 120°C.  相似文献   
65.
Laboratory experiments were carried out to study the effects of slow mixing conditions on magnesium hydroxide floc size and strength and to determine the turbidity and total suspended solid (TSS) removal efficiencies during coagulation of highly turbid suspensions. A highly turbid kaolin clay suspension (1,213?±?36 nephelometric turbidity units (NTU)) was alkalized to pH 10.5 using a 5 M NaOH solution; liquid bittern (LB) equivalent to 536 mg/L of Mg2+ was added as a coagulant, and the suspension was then subjected to previously optimized fast mixing conditions of 100 rpm and 60 s. Slow mixing speed (20, 30, 40, and 50 rpm) and time (10, 20, and 30 min) were then varied, while the temperature was maintained at 20.7?±?1 °C. The standard practice for coagulation-flocculation jar test ASTM D2035-13 (2013) was followed in all experiments. Relative floc size was monitored using an optical measuring device, photometric dispersion analyzer (PDA 2000). Larger and more shear resistant flocs were obtained at 20 rpm for both 20- and 30-min slow mixing times; however, given the shorter duration for the former, the 20-min slow mixing time was considered to be more energy efficient. For slow mixing camp number (Gt) values in the range of 8,400–90,000, it was found that the mixing speed affected floc size and strength more than the time. Higher-turbidity removal efficiencies were achieved at 20 and 30 rpm, while TSS removal efficiency was higher for the 50-rpm slow mixing speed. Extended slow mixing time of 30 min yielded better turbidity and TSS removal efficiencies at the slower speeds.  相似文献   
66.
Within the framework of the MYTIOR project in 2009, heavy metals and organic compounds contaminations were assessed in transplanted mussels in 16 different stations along the coasts of Libya. These stations were located at miles offshore industrial/urban sources but in open sea providing original results related to the background contamination rather than linked to a specific coastal source of pollutants. Results indicated mercury (Hg, 0.045–0.066 mg/kg dry weight (dw)), lead (Pb, 0.44–0, 71 mg/kg dw) and copper (Cu, 3.56–4.21 mg/kg dw) were in the same range or at lower value than control for all stations. Chromium (Cr) in Meleta (3.08 mg/kg dw) and Bomba (3.80 mg/kg dw) and Cadmium values in all stations (1.21–2.41 mg/kg dw) were above control. Meleta, stations from the gulf of Syrt and the three eastern stations were the most affected stations by nickel (max at 5.83 mg/kg dw in Syrt) when zinc was in the same range (141–197 mg/kg dw) and above the control (92 mg/kg dw) at all stations. Polycyclic aromatic hydrocarbon (PAH) levels were found in the range of 16.8–42.8 mg/kg (dry weight) indicating low levels along the Libyan coast with acenaphthene and benzo (a, b, k) pyrenes detected mainly in western Libya. The study of PAH ratios indicated a mixed petrogenic/pyrolytic origin. The only polychlorinated biphenyls (PCBs) found in Libya were PCB 101 in one location and PCB 153 in Tripoli, Garrapoli, Syrt, Ras Lanuf and Benghazi (1.2–1.9 μg/kg dw). Insecticides were lower than control in all stations except DDT, only detected in Misratah (3.5 μg/kg dw). Overall, the results indicated a low background contamination and a low pollution extent according to the environmental pressure occurring offshore the Libyan coast.  相似文献   
67.
Thirty N-acyl homoserine lactone (AHL) analogs with variable antibacterial activity and displaying inhibition of biofilm formation were selected to develop models for establishing three-dimensional quantitative structure-activity relationships (3D-QSAR). Comparative molecular field analysis (CoMFA) and comparative similarity indices analysis (CoMSIA) were carried out to determine the optimum structural requirements for selectivity and potency of quorum-sensing and bacterial biofilm inhibition. The best CoMFA model predicted a q2 value of 0.519 and an r2 value of 0.984 and revealed that electrostatic and steric properties play a significant role in potency and selectivity. The CoMSIA model predicted a q2 value of 0.411 and an r2 value of 0.938 based on a combination of steric, electrostatic, and hydrophobic effects. The analysis of the contour maps from each model provide insight into the structural requirements for increasing the activity of a compound. Consequently, manipulating the chemical and physical properties of substituted acyl groups on the homoserine lactone moiety can provide important information toward enhancing the antibacterial properties of the target chemical compound.  相似文献   
68.
 Process integration is a holistic approach to process design and operation. It emphasizes the unity of the process units and objectives. Therefore, it provides a unique framework for integrating environmental issues with other process objectives such as profitability, yield enhancement, debottlenecking and energy reduction. This paper presents a review of recent advances in the area of pollution prevention through process integration. First, the alternative methods for industrial waste reduction are discussed. Then, process integration is defined and categorized into three main components: synthesis, analysis and optimization. Next, mass integration science and methods are reviewed with special emphasis on their critical role in pollution prevention. Throughout the paper, various tools and techniques are described and illustrated. Received: 7 July 1998 / Accepted: 8 September 1998  相似文献   
69.
Environment, Development and Sustainability - The north-western Mediterranean coast of Egypt, including the study area from El Hammam to EL Alamein, is a hub for economic and coastal tourism...  相似文献   
70.
Commercially available adsorption cooling systems use water/silica gel, water/zeolite and ammonia/ chloride salts working pairs. The water-based pairs are limited to work above 0°C due to the water high freezing temperature, while ammonia has the disadvantage of being toxic. Ethanol is a promising refrigerant due to its low freezing point (161 K), nontoxicity, zero ozone depletion, and low global warming potential. Activated carbon (AC) is a porous material with high degree of porosity (500–3000 m2/g) that has been used in wide range of applications. Using Dynamic Vapour Sorption (DVS) test facility, this work characterizes the ethanol adsorption of eleven commercially available activated carbon materials for cooling at low temperature of ?15°C. DVS adsorption results show that Maxsorb has the best performance in terms of ethanol uptake and adsorption kinetics compared to the other tested materials. The Maxsorb/ethanol adsorption process has been numerically modeled using computational fluid dynamics (CFD) and simulation results are validated using the DVS experimental measurements. The validated CFD simulation of the adsorption process is used to predict the effects of adsorbent layer thickness and packing density on cycle uptake for evaporating temperature of ?15°C. Simulation results show that as the thickness of the Maxsorb adsorbent layer increases, its uptake decreases. As for the packing density, the amount of ethanol adsorbed per plate increases with the packing density reaching maximum at 750 kg/m3. This work shows the potential of using Maxsorb/ethanol in producing low temperature cooling down to ?15°C with specific cooling energy reaching 400 kJ/kg.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号