首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16294篇
  免费   204篇
  国内免费   137篇
安全科学   457篇
废物处理   602篇
环保管理   2238篇
综合类   3122篇
基础理论   4078篇
环境理论   12篇
污染及防治   4036篇
评价与监测   1001篇
社会与环境   961篇
灾害及防治   128篇
  2022年   132篇
  2021年   138篇
  2020年   111篇
  2019年   150篇
  2018年   217篇
  2017年   250篇
  2016年   345篇
  2015年   294篇
  2014年   385篇
  2013年   1373篇
  2012年   498篇
  2011年   669篇
  2010年   525篇
  2009年   594篇
  2008年   661篇
  2007年   679篇
  2006年   636篇
  2005年   518篇
  2004年   497篇
  2003年   508篇
  2002年   440篇
  2001年   544篇
  2000年   428篇
  1999年   245篇
  1998年   201篇
  1997年   192篇
  1996年   209篇
  1995年   220篇
  1994年   211篇
  1993年   206篇
  1992年   215篇
  1991年   204篇
  1990年   204篇
  1989年   175篇
  1988年   152篇
  1987年   132篇
  1986年   157篇
  1985年   159篇
  1984年   161篇
  1983年   162篇
  1982年   156篇
  1981年   163篇
  1980年   152篇
  1979年   145篇
  1978年   108篇
  1977年   121篇
  1974年   109篇
  1973年   91篇
  1972年   107篇
  1971年   88篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
651.
A study of the anaerobic treatment of wastewaters derived from red (RWWW) and tropical fruit wine (TFWWW) production was carried out in four laboratory-scale fluidized bed reactors with natural zeolite as bacterial support. These reactors operated at mesophilic temperature (35°C). Reactors R1 and R2 contained Chilean natural zeolite, while reactors R3 and R4 used Cuban natural zeolite as microorganism support. In addition, reactors R1 and R3 processed RWWW, while reactors R2 and R4 used TFWWW as substrate. The biomass concentration attached to zeolites in the four reactors studied was found to be in the range of 44–46 g volatile solids (VS)/L after 90 days of operation time. Both types of zeolites can be used indistinctly in the fluidized bed reactors achieving more than 80%–86% chemical oxygen demand (COD) removals for organic loading rates (OLR) of up to at least 20 g COD/L d. pH values remained within the optimal range for anaerobic microorganisms for OLR values of up to 20 and 22 g COD/L d for RWWW and TFWWW, respectively. Toxicity and inhibition levels were observed at an OLR of 20 g COD/L d in reactors R1 and R3 while processing RWWW, whereas the aforementioned inhibitory phenomena were not observed at an OLR of 24 g COD/L d in R2 and R4, treating TFWWW as a consequence of the lower phenolic compound content present in this substrate. The volatile fatty acid (VFA) levels were always lower in reactors processing TFWWW (R2 and R4) and these values (< 400 mg/L, as acetic acid) were lower than the suggested limits for digester failure. The specific methanogenic activity (SMA) was twice as high in reactors R2 and R4 than in R1 and R3 after 120 days of operation when all reactors operated at an OLR of 20 g COD/L d.  相似文献   
652.
Decreasing pesticide use in olive groves is central to controlling pathogens and pests such as Bactrocera oleae. This has led to the development of mass trapping devices which not only minimize pesticide use but, with improved efficacy of attractants, also decrease costs associated with pest control and ensures that the quality of olive oil is safe for human consumption. This study was undertaken to test a new device which utilizes reduced quantities of both insecticide (lambda-cyalothrin) as well as the female olive fly pheromone (1,7-dioxaspiro-(5.5)-undecane). The new device was tested against an older device manufactured by the same company. The use of plastic polymers as substrate for encapsulating the pheromone allowed for a slower pheromone release, prolonging the efficacy and duration and thus reducing costs. The density of adult populations was monitored using yellow chromotropic traps that were checked every ten days and the degree of olive infestation, as determined by preimago stages, was assessed by analyzing 100 drupes per plot. Infestation analyses were performed every ten days. The control plot had the lowest density of adults and the highest drupe infestation rate. The new devices were more effective than the older devices in both attracting adults and controlling infestation of drupes. Moreover, the new devices containing reduced amounts of pheromone and insecticide were cheaper and exhibited longer functional efficacy. In addition to the slower release of attractants, the plastic polymers used in these newer devices were also more resistant to mechanical and weather degradations. Results demonstrate that mass trapping can indeed be an effective means of controlling B. oleae via eco-sustainable olive farming.  相似文献   
653.
The objective of this study was to determine the impact of manure placement depth on crop yield and N retention in soil. Experimental treatments were deep manure injection (45 cm), shallow manure injection (15 cm), and conventional fertilizer-based management with at least three replications per site. Water infiltration, and changes in soil N and P amounts were measured for up to 30 months and crop yield monitored for three seasons following initial treatment. Deep and shallow manure injections differed in soil inorganic N distributions. For example, in the manure slot the spring following application, NO3-N in the surface 60 cm was higher (p < .01) when injected 15 cm (21.4 μ g/g) into the soil than 45 cm (11.7 μ g/g), whereas NH4-N had opposite results with shallow injection having less (p = 0.045) NH4-N (102 μ g/g) than deep (133 μ g/g) injection. In the fall one year after the manure was applied, NO3-N and NH4-N were lower (p = 0.001) in the shallow injection than the deep injection. The net impact of manure placement on total N was that deep injection had 31, 59, and 44 more kg N ha? 1 than the shallow injection treatment 12, 18, and 30 months after application, respectively. Deep manure injection did not impact soybean (Glycine max L.) yield, however corn (Zea mays L.) yield increased if N was limiting. The higher corn yield in the deep injected treatment was attributed to increased N use efficiency. Higher inorganic N amounts in the deep injection treatment were attributed to reduced N losses through ammonia volatilization, leaching, or denitrification. Results suggest that deep manure placement in glacial till soil may be considered a technique to increase energy, N use efficiency, and maintain surface and ground water quality. However, this technique may not work in glacial outwash soils due to the inability to inject into a rocky subsurface.  相似文献   
654.
A low-cost, high throughput bioanalytical screening method was developed for monitoring cis/trans-permethrin in dust and soil samples. The method consisted of a simple sample preparation procedure [sonication with dichloromethane followed by a solvent exchange into methanol:water (1:1)] with bioanalytical detection using a magnetic particle enzyme-linked immunosorbent assay (ELISA). Quantitative recoveries (83–126 %) of cis/trans-permethrin were obtained for spiked soil and dust samples. The percent difference of duplicate ELISA analyses was within ± 20 % for standards and ± 35 % for samples. Similar sample preparation procedures were used for the conventional gas chromatography/mass spectrometry (GC/MS) analysis except that additional cleanup steps were required. Recoveries of cis/trans-permethrin ranged from 81 to 108 % for spiked soil and dust samples by GC/MS. The ELISA-derived permethrin concentrations were highly correlated with the GC/MS-derived sum of cis/trans-permethrin concentrations with a correlation coefficient (r) of 0.986. The ELISA method provided a rapid qualitative screen for cis/trans-permethrin in soil and dust while providing a higher sample throughput with a lower cost as compared to the GC/MS method. The ELISA can be applied as a complementary, low-cost screening tool to prioritize and rank samples prior to instrumental analysis for exposure studies.  相似文献   
655.
Abstract

This study is a part of an ongoing investigation of the types and locations of emission sources that contribute fine particulate air contaminants to Underhill, VT. The air quality monitoring data used for this study are from the Interagency Monitoring of Protected Visual Environments network for the period of 2001–2003 for the Underhill site. The main source-receptor modeling techniques used are the positive matrix factorization (PMF) and potential source contribution function (PSCF). This new study is intended as a comparison to a previous study of the 1988–1995 Underhill data that successfully revealed a total of 11 types of emission sources with significant contributions to this rural site. This new study has identified a total of nine sources: nitrate-rich secondary aerosol, wood smoke, East Coast oil combustion, automobile emission, metal working, soil/dust, sulfur-rich aerosol type I, sulfur-rich aerosol type II, and sea salt/road salt. Furthermore, the mass contributions from the PMF identified sources that correspond with sampling days with either good or poor visibility were analyzed to seek possible correlations. It has been shown that sulfur-rich aerosol type I, nitrate aerosol, and automobile emission are the most important contributors to visibility degradation. Soil/dust and sea salt/road salt also have an added effect.  相似文献   
656.
657.
Abstract

Three new methods applicable to the determination of hazardous metal concentrations in stationary source emissions were developed and evaluated for use in U.S. Environmental Protection Agency (EPA) compliance applications. Two of the three independent methods, a continuous emissions monitor-based method (Xact) and an X-ray-based filter method (XFM), are used to measure metal emissions. The third method involves a quantitative aerosol generator (QAG), which produces a reference aerosol used to evaluate the measurement methods. A modification of EPA Method 301 was used to validate the three methods for As, Cd, Cr, Pb, and Hg, representing three hazardous waste combustor Maximum Achievable Control Technology (MACT) metal categories (low volatile, semivolatile, and volatile). The modified procedure tested the methods using more stringent criteria than EPA Method 301; these criteria included accuracy, precision, and linearity. The aerosol generation method was evaluated in the laboratory by comparing actual with theoretical aerosol concentrations. The measurement methods were evaluated at a hazardous waste combustor (HWC) by comparing measured with reference aerosol concentrations. The QAG, Xact, and XFM met the modified Method 301 validation criteria. All three of the methods demonstrated precisions and accuracies on the order of 5%. In addition, correlation coefficients for each method were on the order of 0.99, confirming the methods’ linear response and high precision over a wide range of concentrations. The measurement methods should be applicable to emissions from a wide range of sources, and the reference aerosol generator should be applicable to additional analytes. EPA recently approved an alternative monitoring petition for an HWC at Eli Lilly’s Tippecanoe site in Lafayette, IN, in which the Xact is used for demonstrating compliance with the HWC MACT metal emissions (low volatile, semivolatile, and volatile). The QAG reference aerosol generator was approved as a method for providing a quantitative reference aerosol, which is required for certification and continuing quality assurance of the Xact.  相似文献   
658.
This study has investigated numerically the influence of particle location on the number of charges per charged particle in the 10–40 nm size range at the outlet of a needle charger by simulating flow field, electric field, particle charging, and particle trajectory at various conditions. The results show that the total (i.e., diffusion + field charging) number of charges per particle increase with decreasing ratio values of radial location at the outlet of the charger due to the particle position close to the needle tip. It has also been shown that in the outlet region of the charger there is a critical radial location at which the number of charges per particle is a maximum; this critical radial location represents the point at which the charged particle trajectory becomes closest to the needle electrode. The maximum value of number of charges increases with increasing Reynolds number and slightly increases with decreasing applied voltage for particle diameter larger than 20 nm. The maximum number of charges per charged nanoparticle increases with increasing particle diameter. In addition, the minimum ratio value of radial particle location decreases with increasing Reynolds number for various particle diameters.

Implications: In this work, the influence of particle location on the number of charges per charged nanoparticle at the outlet of a needle charger has been investigated using numerical models under different conditions. The results demonstrate that the radial location affects the number of charges per particle at the outlet of the charger. The maximum number of charges increases with increasing particle diameter, and the minimum ratio value of radial particle location decreases with increasing Reynolds number. The numerical models explain and quantify the number of charges on the charged particle in the 10–40 nm size range from the outlet of the needle charger at various conditions.  相似文献   
659.
660.
Abstract

A neural fuzzy system was used to investigate the influence of environmental variables (time, aeration, moisture, and particle size) on composting parameters (pH, organic matter [OM], nitrogen [N], ammonium nitrogen [NH4 +-N] and nitrate nitrogen [NO3 --N]). This was to determine the best composting conditions to ensure the maximum quality on the composts obtained with the minimum ammonium losses. A central composite experimental design was used to obtain the neural fuzzy model for each dependent variable. These models, consisting of the four independent process variables, were found to accurately describe the composting process (the differences between the experimental values and those estimated by using the equations never exceeded 5–10% of the former). Results of the modeling showed that creating a product with acceptable chemical properties (pH, NH4 +-N and NO3 --N) entails operating at medium moisture content (55%) and medium to high particle size (3–5 cm). Moderate to low aeration (0.2 L air/min · kg) would be the best compromise to compost this residue because of the scant statistical influence of this independent variable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号