首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   14篇
  国内免费   7篇
安全科学   15篇
废物处理   39篇
环保管理   44篇
综合类   65篇
基础理论   158篇
污染及防治   191篇
评价与监测   56篇
社会与环境   46篇
灾害及防治   2篇
  2023年   7篇
  2022年   21篇
  2021年   15篇
  2020年   8篇
  2019年   12篇
  2018年   27篇
  2017年   27篇
  2016年   35篇
  2015年   15篇
  2014年   33篇
  2013年   52篇
  2012年   42篇
  2011年   59篇
  2010年   34篇
  2009年   38篇
  2008年   29篇
  2007年   35篇
  2006年   24篇
  2005年   26篇
  2004年   17篇
  2003年   15篇
  2002年   4篇
  2001年   8篇
  2000年   10篇
  1999年   2篇
  1997年   3篇
  1996年   3篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1972年   1篇
排序方式: 共有616条查询结果,搜索用时 15 毫秒
581.
The EMAS Regulation (Reg 761/01 EC) is EU scheme implemented by the European Commission since 1993 and it is for the implementation of an Environmental Management System (EMS) by any organization. The EMS was originally proposed by the European Commission and by the ISO as the frontrunner of a series of policy tools that enable companies to simultaneously pursue environmental objectives and competitive targets in a synergetic way.Based on the unique dataset of the EVER project, this paper investigates whether or not an EMS implemented within the EMAS Regulation has any effect on firm performance both from an environmental and a competitive point of view. Our econometric analysis shows the positive impact of a well-designed environmental management system on environmental performance and, as a consequence, on technical and organizational innovations. Effects on other competitive variables such as market performance, resource productivity and intangible assets are not strongly supported.  相似文献   
582.
We questioned the different interpretations of ecological sexual segregation from a novel perspective, i.e., by carrying out diverse temporal and spatial scale analyses within a long-term study (1984–2003). Thus we combined spatial (small/large) and temporal (small/large) scale analyses to identify the factors generating sexual segregation in fallow deer in San Rossore, Italy. The study site was divided into an eastern sector characterized by human disturbance (DS) and a western undisturbed sector (US). According to census data, human presence increased in DS from 1984, and while females gradually abandoned it, males remained—thus supporting the predation risk hypothesis (large spatial and temporal scale)—and actually increased their presence in DS, where they seemingly benefited from a lower female density. This supported the indirect competition hypothesis. The analysis of data on a large temporal and small spatial scale confirmed that intersexual competition, in particular for grass, was higher in a crowded pasture in US. Observations by means of radio-telemetry of 23 adult females and 25 adult males (1997–2001, reduced temporal and large spatial scale) showed that large scale segregation was relevant during the day and disappeared at night, when disturbance was absent and also the females reached DS. This also supported the predation risk hypothesis. Moreover, sexes showed different habitat choices inside DS at night, thus supporting the forage selection hypothesis (small spatial and temporal scale). In conclusion, failure to address the whole set of combinations of spatial and temporal scale analyses would have led to monocausal explanations of ecological sexual segregation.  相似文献   
583.
584.
The present work proposes a siting process for the detection of a suitable site for wave energy exploitation. The choice of a suitable site is based on the good agreement between energy availability, environmental sustainability, and equipped facilities to exploit wave energy. The case study in the northern Latium coast is explicative because in this area there are several activities that affect marine ecosystems, and the introduction of renewable energies promote the reduction of anthropic pressures. The nearshore wave power is studied through the numerical wave model (CMS-Wave), and available wave buoys along the coast were used to compare numerical results. In correspondence with Civitavecchia harbour, the largest nearshore wave energy was found; the large depth in front of the breakwater allows to conserve a great part of offshore wave power, with an average dissipation rate of 10 % less than offshore, with mean annual available wave energy of 25.4 MWh/m and seasonal fluctuation of 5.4 MWh/m. This area appears to be an optimal site for nearshore and shoreline wave energy device tests and installations, for energy availability (intermediate level respect Mediterreanean Sea), low potential environmental impact, easier accessibility, and policy oriented towards a larger sustainability of harbour activities.  相似文献   
585.
Control of rainfall-runoff particulate matter (PM) and PM-bound chemical loads is challenging; in part due to the wide gradation of PM complex geometries of many unit operations and variable flow rates. Such challenges and the expense associated with resolving such challenges have led to the relatively common examination of a spectrum of unit operations and processes. This study applies the principles of computational fluid dynamics (CFD) to predict the particle and pollutant clarification behavior of these systems subject to dilute multiphase flows, typical of rainfall-runoff, within computationally reasonable limits, to a scientifically acceptable degree of accuracy. The Navier-Stokes (NS) system of nonlinear partial differential equations for multiphase hydrodynamics and separation of entrained particles are solved numerically over the unit operation control volume with the boundary and initial conditions defined and then solved numerically until the desired convergence criteria are met. Flow rates examined are scaled based on sizing of common unit operations such as hydrodynamic separators (HS), wet basins, or filters, and are examined from 1 to 100 percent of the system maximum hydraulic operating flow rate. A standard turbulence model is used to resolve flow, and a discrete phase model (DPM) is utilized to examine the particle clarification response. CFD results closely follow physical model results across the entire range of flow rates. Post-processing the CFD predictions provides an in-depth insight into the mechanistic behavior of unit operations by means of three dimensional (3-D) hydraulic profiles and particle trajectories. Results demonstrate the role of scour in the rapid degradation of unit operations that are not maintained. Comparisons are provided between measured and CFD modeled results and a mass balance error is identified. CFD is arguably the most powerful tool available for our profession since continuous simulation modeling.  相似文献   
586.
Experimental manipulations have revealed positive effects of litter reduction on offspring mass in small mammals, but little is known about this trade-off in large mammals. We examined the determinants of natural litter size variation and quantified the effects of litter size, maternal characteristics, and litter composition on yearling mass using 24?years of data on marked brown bears (Ursus arctos) in Sweden. Infanticide by adult males is a major cause of cub-of-the-year mortality, leading to litter size reductions. Litter size (n?=?265) at den emergence ranged from one to four cubs (average, 2.7) and increased with maternal age. Litter size, however, appeared independent of maternal size, population density, interlitter interval, study area, or previous litter sex ratio. Yearling body mass increased with maternal body size but was independent of litter sex ratio. Litter size and yearling mass were negatively correlated, mostly because singletons were about 30?% heavier than yearlings from litters of two to four cubs. In reduced litters, survivors were on average 8?% heavier as yearlings than individuals from intact litters, suggesting that sibling competition reduces growth. Trade-offs between litter size and yearling mass in bears appear similar in magnitude to those found in small mammals.  相似文献   
587.
Effective population size (N(e)) determines the strength of genetic drift and can influence the level of genetic diversity a population can maintain. Assessing how changes in demographic rates associated with environmental variables and management actions affect N(e) thus can be crucial to the conservation of endangered species. Calculation of N(e) through demographic models makes it possible to use elasticity analyses to study this issue. The elasticity of N(e) to a given vital rate is the proportional change in N(e) associated with a proportional increase in that vital rate. In addition, demographic models can be used to study N(e) and population growth rate (λ) simultaneously. Simultaneous examination is important because some vital rates differ diametrically in their associations with λ and N(e). For example, in some cases increasing these vital rates increases λ and decreases N(e). We used elasticity analysis to study the effect of stage-specific survival and flowering rates on N(e), annual effective population size (N(a)), and λ in seven populations of the endangered plant Austrian dragonhead (Dracocephalum austriacum). In populations with λ ≥ 1, the elasticities of N(e) and N(a) were similar to those of λ. Survival rates of adults were associated with greater elasticities than survival rates of juveniles, flowering rates, or fecundity. In populations with λ < 1, N(e) and N(a) exhibited greater elasticities to juvenile than to adult vital rates. These patterns are similar to those observed in other species with similar life histories. We did not observe contrasting effects of any vital rate on λ and N(e); thus, management actions that increase the λ of populations of Austrian dragonhead will not increase genetic drift. Our results show that elasticity analyses of N(e) and N(a) can complement elasticity analysis of λ. Moreover, such analyses do not require more data than standard matrix models of population dynamics.  相似文献   
588.
Seasonal patterns of climate and vegetation growth are expected to be altered by global warming. In alpine environments, the reproduction of birds and mammals is tightly linked to seasonality; therefore such alterations may have strong repercussions on recruitment. We used the normalized difference vegetation index (NDVI), a satellite-based measurement that correlates strongly with aboveground net primary productivity, to explore how annual variations in the timing of vegetation onset and in the rate of change in primary production during green-up affected juvenile growth and survival of bighorn sheep (Ovis canadensis), Alpine ibex (Capra ibex), and mountain goats (Oreamnos americanus) in four different populations in two continents. We indexed timing of onset of vegetation growth by the integrated NDVI (INDVI) in May. The rate of change in primary production during green-up (early May to early July) was estimated as (1) the maximal slope between any two successive bimonthly NDVI values during this period and (2) the slope in NDVI between early May and early July. The maximal slope in NDVI was negatively correlated with lamb growth and survival in both populations of bighorn sheep, growth of mountain goat kids, and survival of Alpine ibex kids, but not with survival of mountain goat kids. There was no effect of INDVI in May and of the slope in NDVI between early May and early July on juvenile growth and survival for any species. Although rapid changes in NDVI during the green-up period could translate into higher plant productivity, they may also lead to a shorter period of availability of high-quality forage over a large spatial scale, decreasing the opportunity for mountain ungulates to exploit high-quality forage. Our results suggest that attempts to forecast how warmer winters and springs will affect animal population dynamics and life histories in alpine environments should consider factors influencing the rate of changes in primary production during green-up and the timing of vegetation onset.  相似文献   
589.
Steady-state, dynamic, and spatial models were constructed for the benthic system of La Rinconada Marine Reserve off northern Chile (SE Pacific coast). We examined data on biomass, P/B ratios, catches, food spectrum, consumption, and the dynamics of commercial and non-commercial populations using three theoretical frameworks: Ecopath, Ecosim, and Ecospace. The biomass of the scallop Argopecten purpuratus and the clam Tagelus dombeii were the most relevant compartments of the studied ecosystem. Among the carnivores, the functional crab group Cancer spp. was the most relevant. The Rhodophyta was the dominant macroalga compartment of the system. The results obtained using mixed trophic impacts (MTI) showed that the predatory snail Thais chocolata propagated higher magnitudes of direct and indirect effects on the other species or functional groups. The sea star Luidia magallanica and Rhodophyta had the least effects on the remaining compartments. According to the Ecosim estimates (increasing mortality by fishing), the scallop A. purpuratus had the highest impact on the other compartments. The Ecospace model showed similar qualitative and quantitative effects for changes in biomass under three different exploitation scenarios (by subsystems and globally). Nevertheless, the greatest changes were provoked by using the top-down control and the vulnerabilities estimated by Ecosim. System recovery times were highest with increased mortality of the asteroid L. magallanica and the carnivorous snail T. chocolata, suggesting that the sea star could be considered to be a top predator with a top-down control. The FMSY estimated for the scallop A. purpuratus was close to the Fi originally entered in Ecopath, limiting the design and execution of an exploitation plan within ecologically sustainable boundaries. The situation was different (FMSY ? Fi) for the other commercial species, making possible multi-species exploitation programs. The Ecospace trophic-spatially explicit model shows a similar pattern of direct and indirect effects generated when exerting exploitation separately by subsystems. Therefore, habitat rotation of fisheries is not justified.  相似文献   
590.
The recent global financial crisis has highlighted the need for balanced and efficient investments in the reduction of the greenhouse effect caused by emissions of CO2 on a global scale. In a previous paper, the authors proposed a mathematical model describing the dynamic relation of CO2 emission with investment in reforestation and clean technology. An efficient allocation of resources to reduce the greenhouse effect has also been proposed. Here, this model is used to provide estimates of the investments needed in land reforestation and in the adoption of clean technologies for an optimum emission and abatement of CO2, for the period of 1996–2014. The required investments are computed to minimize deviations with respect to the emission targets proposed in the Kyoto Protocol for European Countries. The emission target can be achieved by 2014 with investments in reforestation peaking in 2004, and a reduction of the expected GDP of 42%, relative to 2006. Investments in clean technology should increase between 2008 and 2010 with maximum transfer figures around 70 million American dollars. Total (cumulative) costs are, however, relatively high depending on the price of carbon abatement and the rate at which the expected CO2 concentration in the atmosphere should be reduced. Results highlight the advantages for policy makers to be able to manage investments in climate policy more efficiently, controlling optimum transfers based on a portfolio of actions that tracks a pre-defined CO2 concentration target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号