首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   2篇
安全科学   12篇
废物处理   9篇
环保管理   60篇
综合类   18篇
基础理论   51篇
环境理论   1篇
污染及防治   31篇
评价与监测   17篇
社会与环境   8篇
  2023年   2篇
  2021年   4篇
  2018年   7篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   8篇
  2013年   10篇
  2012年   8篇
  2011年   13篇
  2010年   9篇
  2009年   7篇
  2008年   13篇
  2007年   16篇
  2006年   15篇
  2005年   4篇
  2004年   3篇
  2003年   7篇
  2002年   9篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   5篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1972年   3篇
  1971年   2篇
  1968年   1篇
  1965年   1篇
  1914年   1篇
排序方式: 共有207条查询结果,搜索用时 0 毫秒
111.
Biochar: a synthesis of its agronomic impact beyond carbon sequestration   总被引:13,自引:0,他引:13  
Biochar has been heralded as an amendment to revitalize degraded soils, improve soil carbon sequestration, increase agronomic productivity, and enter into future carbon trading markets. However, scientific and economic technicalties may limit the ability of biochar to consistently deliver on these expectations. Past research has demonstrated that biochar is part of the black carbon continuum with variable properties due to the net result of production (e.g., feedstock and pyrolysis conditions) and postproduction factors (storage or activation). Therefore, biochar is not a single entity but rather spans a wide range of black carbon forms. Biochar is black carbon, but not all black carbon is biochar. Agronomic benefits arising from biochar additions to degraded soils have been emphasized, but negligible and negative agronomic effects have also been reported. Fifty percent of the reviewed studies reported yield increases after black carbon or biochar additions, with the remainder of the studies reporting alarming decreases to no significant differences. Hardwood biochar (black carbon) produced by traditional methods (kilns or soil pits) possessed the most consistent yield increases when added to soils. The universality of this conclusion requires further evaluation due to the highly skewed feedstock preferences within existing studies. With global population expanding while the amount of arable land remains limited, restoring soil quality to nonproductive soils could be key to meeting future global food production, food security, and energy supplies; biochar may play a role in this endeavor. Biochar economics are often marginally viable and are tightly tied to the assumed duration of agronomic benefits. Further research is needed to determine the conditions under which biochar can provide economic and agronomic benefits and to elucidate the fundamental mechanisms responsible for these benefits.  相似文献   
112.
Air quality in urban areas attracts great attention due to increasing pollutant emissions and their negative effects on human health and environment. Numerous studies, such as those by Mouilleau and Champassith (J Loss Prevent Proc 22(3): 316–323, 2009), Xie et al. (J Hydrodyn 21(1): 108–117, 2009), and Yassin (Environ Sci Pollut Res 20(6): 3975–3988, 2013) focus on the air pollutant dispersion with no buoyancy effect or weak buoyancy effect. A few studies, such as those by Hu et al. (J Hazard Mater 166(1): 394–406, 2009; J Hazard Mater 192(3): 940–948, 2011; J Civ Eng Manag (2013)) focus on the fire-induced dispersion of pollutants with heat buoyancy release rate in the range from 0.5 to 20 MW. However, the air pollution source might very often be concentrated and intensive, as a consequence of the hazardous materials fire. Namely, transportation of fuel through urban areas occurs regularly, because it is often impossible to find alternative supply routes. It is accompanied with the risk of fire accident occurrences. Accident prevention strategies require analysis of the worst scenarios in which fire products jeopardize the exposed population and environment. The aim of this article is to analyze the impact of wind flow on air pollution and human vulnerability to fire products in a street canyon. For simulation of the gasoline tanker truck fire as a result of a multivehicle accident, computational fluid dynamics large eddy simulation method has been used. Numerical results show that the fire products flow vertically upward, without touching the walls of the buildings in the absence of wind. However, when the wind velocity reaches the critical value, the products touch the walls of the buildings on both sides of the street canyon. The concentrations of carbon monoxide and soot decrease, whereas carbon dioxide concentration increases with the rise of height above the street canyon ground level. The longitudinal concentration of the pollutants inside the street increases with the rise of the wind velocity at the roof level of the street canyon.  相似文献   
113.
Embryos, unlike adults, are typically sessile, which allows for an increase in the available metrics that can be used to assess chemical toxicity. We investigate Daphnia magna development rate and oxygen consumption as toxicity metrics and compare them to arrested embryo development using four different techniques with potassium cyanide (KCN) as a common toxicant. The EC50 (95 % CI) for arrested development was 2,535 (1,747–3,677) μg/L KCN. Using pixel intensity changes, recorded with difference imaging, we semi-quantitatively assessed a decrease in development rate at 200 μg/L KCN, threefold lower than the arrested development lowest observed effect concentration (LOEC). Respirometry and self-referencing (SR) microsensors were two unique techniques used to assess oxygen consumption. Using respirometry, an increase in oxygen consumption was found in the 5 μg/L KCN treatment and a decrease for 148 μg/L, but no change was found for the 78 μg/L KCN treatment. Whereas, with SR microsensors, we were able to detect significant changes in oxygen consumption for all three treatments: 5, 78, and 148 μg/L KCN. While SR offered the highest sensitivity, the respirometry platform developed for this study was much easier to use to measure the same endpoint. Oxygen consumption may be subject to change during the development process, meaning consumption assessment techniques may only be useful only for short-term experiments. Development rate was a more sensitive endpoint though was only reliable four of the six embryonic developmental stages examined. Despite being the least sensitive endpoint, arrested embryo development was the only technique capable of assessing the embryos throughout all developmental stages. In conclusion, each metric has advantages and limitations, but because all are non-invasive, it is possible to use any combination of the three.  相似文献   
114.
In response to a growing societal mandate, land disposal of hazardous wastes is gradually being replaced by treatment technologies. This shift to "alternative technologies" is the result of the impacts of past land disposal practices on other environmental media (groundwater, surface water, and air). A prime motivation for adopting alternatives to land disposal is to eliminate these cross-media impacts. Alternative technologies, however, can themselves have cross-media environmental impacts which must be recognized and addressed before such technologies are extensively applied. This paper discusses hazardous waste constituents, common disposal practices, alternative technologies currently being applied, possible cross-media environmental impacts of the alternative technologies, and proposed methods of mitigating these environmental impacts. Case studies from uncontrolled hazardous waste sites and industrial operations are used to illustrate the application of alternative technologies. Case studies include the application of waste treatment technologies as well as the adoption of waste minimization techniques.  相似文献   
115.
Cholera epidemics have a recorded history in the eastern Africa region dating to 1836. Cholera is now endemic in the Lake Victoria basin, a region with one of the poorest and fastest growing populations in the world. Analyses of precipitation, temperatures, and hydrological characteristics of selected stations in the Lake Victoria basin show that cholera epidemics are closely associated with El Ni?o years. Similarly, sustained temperatures high above normal (T(max)) in two consecutive seasons, followed by a slight cooling in the second season, trigger an outbreak of a cholera epidemic. The health and socioeconomic systems that the lake basin communities rely upon are not robust enough to cope with cholera outbreaks, thus rendering them vulnerable to the impact of climate variability and change. Collectively, this report argues that communities living around the Lake Victoria basin are vulnerable to climate-induced cholera that is aggravated by the low socioeconomic status and lack of an adequate health care system. In assessing the communities' adaptive capacity, the report concludes that persistent levels of poverty have made these communities vulnerable to cholera epidemics.  相似文献   
116.
The phytotoxic risk of ambient air pollution to local vegetation was assessed in Selangor State, Malaysia. The AOT40 value was calculated by means of the continuously monitored daily maximum concentration and the local diurnal pattern of O3. Together with minor risks associated with the levels of NO2 and SO2, the study found that the monthly AOT40 values in these peri-urban sites were consistently over 1.0 ppm.h, which is well in exceedance of the given European critical level. Linking the O3 level to actual agricultural crop production in Selangor State also indicated that the extent of yield losses could have ranged from 1.6 to 5.0% (by weight) in 2000. Despite a number of uncertainties, the study showed a simple but useful methodological framework for phytotoxic risk assessment with a limited data set, which could contribute to appropriate policy discussion and countermeasures in countries under similar conditions.  相似文献   
117.
The effects of pollutants on primary producers ramify through ecosystems because primary producers provide food and structure for higher trophic levels and they mediate the biogeochemical cycling of nutrients and contaminants. Periphyton (attached algae) were studied as part of a long-term biological monitoring program designed to guide remediation efforts by the Department of Energy’s Y-12 National Security Complex on East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee. High concentrations of nutrients entering EFPC were responsible for elevated periphyton production and placed the stream in a state of eutrophy. High rates of primary production at upstream locations in EFPC were associated with alterations in both invertebrate and fish communities. Grazers represented >50% of the biomass of invertebrates and fish near the Y-12 Complex but <10% at downstream and reference sites. An index of epilithic periphyton production accounted for 95% of the site-to-site variation in biomass of grazing fish. Analyses of heavy metals in EFPC periphyton showed that concentrations of zinc, cadmium, copper and nickel in periphyton decreased exponentially with distance downstream from Y-12. Zinc uptake by periphyton was estimated to reduce the concentration of this metal in stream water ~60% over a 5-km reach of EFPC. Management options for mitigating eutrophy in EFPC include additional reductions in nutrient inputs and/or allowing streamside trees to grow and shade the stream. However, reducing periphyton growth may lead to greater downstream transport of contaminants while simultaneously causing higher concentrations of mercury and PCBs in fish at upstream sites.  相似文献   
118.
Plug-in hybrid electric vehicles (PHEVs) have the potential to be an economic means of reducing direct (or tailpipe) carbon dioxide (CO2) emissions from the transportation sector. However, without a climate policy that places a limit on CO2 emissions from the electric generation sector, the net impact of widespread deployment of PHEVs on overall U.S. CO2 emissions is not as clear. A comprehensive analysis must consider jointly the transportation and electricity sectors, along with feedbacks to the rest of the energy system. In this paper, we use the Pacific Northwest National Laboratory's MiniCAM model to perform an integrated economic analysis of the penetration of PHEVs and the resulting impact on total U.S. CO2 emissions. In MiniCAM, the deployment of PHEVs (or any technology) is determined based on its relative economics compared to all other methods of providing fuels and energy carriers to serve passenger transportation demands. Under the assumptions used in this analysis where PHEVs obtain 50–60% of the market for passenger automobiles and light-duty trucks, the ability to deploy PHEVs under the two climate policies modelled here results in over 400 million tons (MT) CO2 per year of additional cost-effective emissions reductions from the U.S. economy by 2050. In addition to investments in nuclear and renewables, one of the key technology options for mitigating emissions in the electric sector is CO2 capture and storage (CCS). The additional demand for geologic CO2 storage created by the introduction of the PHEVs is relatively modest: approximately equal to the cumulative geologic CO2 storage demanded by two to three large 1000 megawatt (MW) coal-fired power plants using CCS over a 50-year period. The introduction of PHEVs into the U.S. transportation sector, coupled with climate policies such as those examined here, could also reduce U.S. demand for oil by 20–30% by 2050 compared to today's levels.  相似文献   
119.
An overarching challenge of natural resource management and biodiversity conservation is that relationships between people and nature are difficult to integrate into tools that can effectively guide decision making. Social–ecological vulnerability offers a valuable framework for identifying and understanding important social–ecological linkages, and the implications of dependencies and other feedback loops in the system. Unfortunately, its implementation at local scales has hitherto been limited due at least in part to the lack of operational tools for spatial representation of social–ecological vulnerability. We developed a method to map social–ecological vulnerability based on information on human–nature dependencies and ecosystem services at local scales. We applied our method to the small‐scale fishery of Moorea, French Polynesia, by combining spatially explicit indicators of exposure, sensitivity, and adaptive capacity of both the resource (i.e., vulnerability of reef fish assemblages to fishing) and resource users (i.e., vulnerability of fishing households to the loss of fishing opportunity). Our results revealed that both social and ecological vulnerabilities varied considerably through space and highlighted areas where sources of vulnerability were high for both social and ecological subsystems (i.e., social–ecological vulnerability hotspots) and thus of high priority for management intervention. Our approach can be used to inform decisions about where biodiversity conservation strategies are likely to be more effective and how social impacts from policy decisions can be minimized. It provides a new perspective on human–nature linkages that can help guide sustainability management at local scales; delivers insights distinct from those provided by emphasis on a single vulnerability component (e.g., exposure); and demonstrates the feasibility and value of operationalizing the social–ecological vulnerability framework for policy, planning, and participatory management decisions.  相似文献   
120.
Predicting and preventing outbreaks of infectious disease in endangered wildlife is problematic without an understanding of the biotic and abiotic factors that influence pathogen transmission and the genetic variation of microorganisms within and between these highly modified host communities. We used a common commensal bacterium, Campylobacter spp., in endangered Takahe (Porphyrio hochstetteri) populations to develop a model with which to study pathogen dynamics in isolated wildlife populations connected through ongoing translocations. Takahe are endemic to New Zealand, where their total population is approximately 230 individuals. Takahe were translocated from a single remnant wild population to multiple offshore and mainland reserves. Several fragmented subpopulations are maintained and connected through regular translocations. We tested 118 Takahe from 8 locations for fecal Campylobacter spp. via culture and DNA extraction and used PCR for species assignment. Factors relating to population connectivity and host life history were explored using multivariate analytical methods to determine associations between host variables and bacterial prevalence. The apparent prevalence of Campylobacter spp. in Takahe was 99%, one of the highest reported in avian populations. Variation in prevalence was evident among Campylobacter species identified. C. sp. nova 1 (90%) colonized the majority of Takahe tested. Prevalence of C. jejuni (38%) and C. coli (24%) was different between Takahe subpopulations, and this difference was associated with factors related to population management, captivity, rearing environment, and the presence of agricultural practices in the location in which birds were sampled. Modeling results of Campylobacter spp. in Takahe metapopulations suggest that anthropogenic management of endangered species within altered environments may have unforeseen effects on microbial exposure, carriage, and disease risk. Translocation of wildlife between locations could have unpredictable consequences including the spread of novel microbes between isolated populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号