Environmental Science and Pollution Research - It is well known that road transport emits various trace elements into the environment, which are deposited in soils in the vicinity of roads,... 相似文献
Biosensors based on whole bacterial cells and on bacterial heavy metal binding protein were used to determine the mercury concentration in soil. The soil samples were collected in a vegetable garden accidentally contaminated with elemental mercury 25 years earlier. Bioavailable mercury was measured using different sensors: a protein-based biosensor, a whole bacterial cell based biosensor, and a plant sensor, i.e. morphological and biochemical responses in primary leaves and roots of bean seedlings grown in the mercury-contaminated soil. For comparison the total mercury concentration of the soil samples was determined by AAS. Whole bacterial cell and protein-based biosensors gave accurate responses proportional to the total amount of mercury in the soil samples. On the contrary, plant sensors were found to be less useful indicators of soil mercury contamination, as determined by plant biomass, mercury content of primary leaves and enzyme activities. 相似文献
The little auk is the most numerous seabird in the North Atlantic and its most important breeding area is the eastern shores of the North Water polynya. Here, a population of an estimated 33 million pairs breeds in huge colonies and significantly shapes the ecosystem. Archaeological remains in the colonies document that the little auk has been harvested over millennia. Anthropological research discloses how the little auk has a role both as social engineer and as a significant resource for the Inughuit today. The hunting can be practiced without costly equipment, and has no gender and age discrimination in contrast to the dominant hunt for marine mammals. Little auks are ecological engineers in the sense that they transport vast amounts of nutrients from sea to land, where the nutrients are deposited as guano. Here, the fertilized vegetation provides important foraging opportunities for hares, geese, fox, reindeer, and the introduced muskox. We estimate that the relative muskox density is ten times higher within 1 km of little auk fertilized vegetation hotspots. 相似文献
A multi-disciplinary approach was used to evaluate the health of yellow perch (Perca flavescens) in the St. Lawrence River (Quebec, Canada), which is experiencing a severe population decline in the downstream portion of the river. Physiological parameters, liver alterations, trace metal concentrations, parasite prevalence and abundance, stable isotope composition, and the presence/absence of the viral hemorragic septicemia virus (VHSV) were evaluated in perch collected at six sites along the river: Lake St. François, Lake St. Louis (north and south), Beauregard Island, and Lake St. Pierre (north and south). Trace metal concentrations in surface water were higher in Lake St. Louis and downstream of a major urban wastewater treatment plant discharge, indicating that this effluent was a significant source of Cu, As, Ag, Zn, and Cd. Levels of Pb in surface water exceeded thresholds for the protection of aquatic life in Lake St. Louis and were negatively correlated with body condition index in this lake. In Lake St. Pierre, Cu, Ag, and Cd bioaccumulated significantly in perch liver and lower body condition index and greater liver damage were observed compared to upstream sites. Parasite analyses indicated a higher abundance of metacercariae of the trematodes Apophallus brevis and Diplostomum spp. in Lake St. Louis, and VHSV was not detected in the liver of yellow perch for all studied sites. Overall, results suggested that the global health of yellow perch from Lake St. Pierre is lower compared to upstream studied sites, which could contribute to the documented population collapse at this site. 相似文献
Intensifying global trade will result in increased numbers of plant pest and pathogen species inadvertently being transported along with cargo. This paper examines current mechanisms for prevention and management of potential introductions of forest insect pests and pathogens in the European Union (EU). Current European legislation has not been found sufficient in preventing invasion, establishment and spread of pest and pathogen species within the EU. Costs associated with future invasions are difficult to estimate but past invasions have led to negative economic impacts in the invaded country. The challenge is combining free trade and free movement of products (within the EU) with protection against invasive pests and pathogens. Public awareness may mobilise the public for prevention and detection of potential invasions and, simultaneously, increase support for eradication and control measures. We recommend focus on commodities in addition to pathways, an approach within the EU using a centralised response unit and, critically, to engage the general public in the battle against establishment and spread of these harmful pests and pathogens. 相似文献
Rock ptarmigan (Lagopus muta) and willow ptarmigan (L. lagopus) are Arctic birds with a circumpolar distribution but there is limited knowledge about their status and trends across their circumpolar distribution. Here, we compiled information from 90 ptarmigan study sites from 7 Arctic countries, where almost half of the sites are still monitored. Rock ptarmigan showed an overall negative trend on Iceland and Greenland, while Svalbard and Newfoundland had positive trends, and no significant trends in Alaska. For willow ptarmigan, there was a negative trend in mid-Sweden and eastern Russia, while northern Fennoscandia, North America and Newfoundland had no significant trends. Both species displayed some periods with population cycles (short 3–6 years and long 9–12 years), but cyclicity changed through time for both species. We propose that simple, cost-efficient systematic surveys that capture the main feature of ptarmigan population dynamics can form the basis for citizen science efforts in order to fill knowledge gaps for the many regions that lack systematic ptarmigan monitoring programs.
On-going population growth and resulting domestic demand for water require rapid and effective decision-making as regards groundwater management and control of the various sources of salinization and pollution in Coastal aquifers. Sustainability of water resources for utilization by future generations must therefore be a high priority, not only for the purpose of fulfilling needs for water usage but also for bringing people into harmony with their ambient natural environment.The objective of this paper is to propose an empirical approach for prioritization of the needs involved for sustainable aquifer management. The approach involves a schematic format to:(1) develop a global understanding of an aquifer's hydrological and environmental properties in order to delineate appropriate eco-hydrological scenarios and recommend corresponding operational management activities; and(2) emphasize the importance of educating and increasing the awareness of the population involved as to the need for and viability of socially acceptable measures for sustainable management of groundwater and other resources.The psychologist Abraham Maslow utilized a pyramid to illustrate that until people's most basic needs were fulfilled, higher levels of needs would remain irrelevant. This paper postulates a comparable pyramid prioritizing hydrological needs required for progressing towards sustainable groundwater resources. Two sub-regions of Israel's Coastal aquifer in the Sharon region have been presented as representative areas, each characterized by different stress of exploitation. In assessing these sub-regions situation, specific measures have been recommended for achieving and/or maintaining sustainable groundwater resources in light of the ambient environment, and the level of the population on the pyramidal hierarchy of groundwater needs. 相似文献