首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4036篇
  免费   102篇
  国内免费   54篇
安全科学   250篇
废物处理   153篇
环保管理   833篇
综合类   471篇
基础理论   1006篇
环境理论   3篇
污染及防治   956篇
评价与监测   313篇
社会与环境   166篇
灾害及防治   41篇
  2023年   31篇
  2022年   41篇
  2021年   46篇
  2020年   57篇
  2019年   71篇
  2018年   85篇
  2017年   124篇
  2016年   142篇
  2015年   109篇
  2014年   134篇
  2013年   351篇
  2012年   185篇
  2011年   236篇
  2010年   182篇
  2009年   203篇
  2008年   210篇
  2007年   222篇
  2006年   205篇
  2005年   178篇
  2004年   157篇
  2003年   138篇
  2002年   136篇
  2001年   97篇
  2000年   69篇
  1999年   63篇
  1998年   48篇
  1997年   64篇
  1996年   50篇
  1995年   54篇
  1994年   56篇
  1993年   46篇
  1992年   39篇
  1991年   31篇
  1990年   29篇
  1989年   27篇
  1988年   23篇
  1987年   17篇
  1986年   17篇
  1985年   23篇
  1984年   18篇
  1983年   28篇
  1982年   22篇
  1981年   32篇
  1980年   19篇
  1979年   18篇
  1978年   13篇
  1977年   5篇
  1976年   6篇
  1975年   5篇
  1969年   4篇
排序方式: 共有4192条查询结果,搜索用时 15 毫秒
171.
Relative rate techniques were used to determine k(Cl + CF3CFCFCF3) = (7.27 ± 0.88) × 10?12, k(Cl + CF3CF2CFCF2) = (1.79 ± 0.41) × 10?11, k(OH + CF3CFCFCF3) = (4.82 ± 1.15) × 10?13, and k(OH + CF3CF2CFCF2) = (1.94 ± 0.27) × 10?12 cm3 molecule?1 s?1 in 700 Torr of air or N2 diluent at 296 K. The chlorine atom- and OH radical-initiated oxidation of CF3CFCFCF3 in 700 Torr of air gives CF3C(O)F in molar yields of 196 ± 11 and 218 ± 20%, respectively. Chlorine atom-initiated oxidation of CF3CF2CFCF2 gives molar yields of 97 ± 9% CF3CF2C(O)F and 97 ± 9% COF2. OH radical-initiated oxidation of CF3CF2CFCF2 gives molar yields of 110 ± 15% CF3CF2C(O)F and 99 ± 8% COF2. The atmospheric fate of CF3CF2C(O)F and CF3C(O)F is hydrolysis to give CF3CF2C(O)OH and CF3C(O)OH. The atmospheric lifetimes of CF3CFCFCF3 and CF3CF2CFCF2 are determined by reaction with OH radicals and are approximately 24 and 6 days, respectively. The contribution of CF3CFCFCF3 and CF3CF2CFCF2 to radiative forcing of climate change will be negligible.  相似文献   
172.

Background, aim and scope

Estrogenic and non-estrogenic chemicals typically co-occur in the environment. Interference by non-estrogenic chemicals may confound the assessment of the actual estrogenic activity of complex environmental samples. The aim of the present study was to investigate whether, in which way and how seriously the estrogenic activity of single estrogens and the observed and predicted joint action of estrogenic mixtures is influenced by toxic masking and synergistic modulation caused by non-estrogenic chemical confounders.

Materials and methods

The yeast estrogen screen (YES) was adapted so that toxicity and estrogenicity could be quantified simultaneously in one experimental run. Mercury, two organic solvents (dimethyl sulfoxide (DMSO) and 2,4-dinitroaniline), a surfactant (LAS-12) and the antibiotic cycloheximide were selected as toxic but non-estrogenic test chemicals. The confounding impact of selected concentrations of these toxicants on the estrogenic activity of the hormone 17ß-estradiol was determined by co-incubation experiments. In a second step, the impact of toxic masking and synergistic modulation on the predictability of the joint action of 17ß-estradiol, estrone and estriol mixtures by concentration addition was analysed.

Results

Each of the non-estrogenic chemicals reduced the apparent estrogenicity of both single estrogens and their mixtures if applied at high, toxic concentrations. Besides this common pattern, a highly substance- and concentration-dependent impact of the non-estrogenic toxicants was observable. The activity of 17ß-estradiol was still reduced in the presence of only low or non-toxic concentrations of 2,4-dinitroaniline and cycloheximide, which was not the case for mercury and DMSO. A clear synergistic modulation, i.e. an enhanced estrogenic activity, was induced by the presence of slightly toxic concentrations of LAS-12. The joint estrogenic activity of the mixture of estrogens was affected by toxic masking and synergistic modulation in direct proportion to the single estrogens, which allowed for an adequate adaptation of concentration addition and thus unaffected predictability of the joint estrogenicity in the presence of non-estrogenic confounders.

Discussion

The modified YES proved to be a reliable system for the simultaneous quantification of yeast toxicity and estrogen receptor activation. Experimental results substantiate the available evidence for toxic masking as a relevant phenomenon in estrogenicity assessment of complex environmental samples. Synergistic modulation of estrogenic activity by non-estrogenic confounders might be of lower importance. The concept of concentration addition is discussed as a valuable tool for estrogenicity assessment of complex mixtures, with deviations of the measured joint estrogenicity from predictions indicating the need for refined analyses.

Conclusions

Two major challenges are to be considered simultaneously for a reliable analysis of the estrogenic activity of complex mixtures: the identification of known and suspected estrogenic compounds in the sample as well as the substance- and effect-level-dependent confounding impact of non-estrogenic toxicants.

Recommendations and perspectives

The application of screening assays such as the YES to complex mixtures should be accompanied by measures that safeguard against false negative results which may be caused by non-estrogenic but toxic confounders. Simultaneous assessments of estrogenicity and toxicity are generally advisable.  相似文献   
173.
The potential for aerobic biodegradation of MTBE in a fractured chalk aquifer is assessed in microcosm experiments over 450 days, under in situ conditions for a groundwater temperature of 10 °C, MTBE concentration between 0.1 and 1.0 mg/L and dissolved O2 concentration between 2 and 10 mg/L. Following a lag period of up to 120 days, MTBE was biodegraded in uncontaminated aquifer microcosms at concentrations up to 1.2 mg/L, demonstrating that the aquifer has an intrinsic potential to biodegrade MTBE aerobically. The MTBE biodegradation rate increased three-fold from a mean of 6.6 ± 1.6 μg/L/day in uncontaminated aquifer microcosms for subsequent additions of MTBE, suggesting an increasing biodegradation capability, due to microbial cell growth and increased biomass after repeated exposure to MTBE. In contaminated aquifer microcosms which also contained TAME, MTBE biodegradation occurred after a shorter lag of 15 or 33 days and MTBE biodegradation rates were higher (max. 27.5 μg/L/day), probably resulting from an acclimated microbial population due to previous exposure to MTBE in situ. The initial MTBE concentration did not affect the lag period but the biodegradation rate increased with the initial MTBE concentration, indicating that there was no inhibition of MTBE biodegradation related to MTBE concentration up to 1.2 mg/L. No minimum substrate concentration for MTBE biodegradation was observed, indicating that in the presence of dissolved O2 (and absence of inhibitory factors) MTBE biodegradation would occur in the aquifer at MTBE concentrations (ca. 0.1 mg/L) found at the front of the ether oxygenate plume. MTBE biodegradation occurred with concomitant O2 consumption but no other electron acceptor utilisation, indicating biodegradation by aerobic processes only. However, O2 consumption was less than the stoichiometric requirement for complete MTBE mineralization, suggesting that only partial biodegradation of MTBE to intermediate organic metabolites occurred. The availability of dissolved O2 did not affect MTBE biodegradation significantly, with similar MTBE biodegradation behaviour and rates down to ca. 0.7 mg/L dissolved O2 concentration. The results indicate that aerobic MTBE biodegradation could be significant in the plume fringe, during mixing of the contaminant plume and uncontaminated groundwater and that, relative to the plume migration, aerobic biodegradation is important for MTBE attenuation. Moreover, should the groundwater dissolved O2 concentration fall to zero such that MTBE biodegradation was inhibited, an engineered approach to enhance in situ bioremediation could supply O2 at relatively low levels (e.g. 2–3 mg/L) to effectively stimulate MTBE biodegradation, which has significant practical advantages. The study shows that aerobic MTBE biodegradation can occur at environmentally significant rates in this aquifer, and that long-term microcosm experiments (100s days) may be necessary to correctly interpret contaminant biodegradation potential in aquifers to support site management decisions.  相似文献   
174.
Goal, Scope and Background One of the advantages of long-term mesocosm experiments as compared to short-term standard toxicity tests in the laboratory is the potential for detecting secondary effects due to the interaction of species and recovery with biomass of macrophytes being an important endpoint. However, generating biomass data by harvesting is often laborious, time-consuming, costly and restricted to the end of the experiment. Moreover, valuable information may get lost, in particular in single application studies, since maximal primary effects and secondary effects or recovery occur per se at different times. Potamogeton natans was used as an example in order to test whether number and area of floating leaves can be reliably measured and be used as intermediate and final endpoints in mesocosm effect studies. Methods Digital photos, which were taken of the water surface in the course of an indoor pond mesocosm study on herbicide effects, were subjected to image analysis. The results were compared to wet weight and ash-free dry weight of Potamogeton at the end of the herbicide study. Results and Discussion Both number and area of floating leaves indicated the same herbicide effects as wet weight and ash-free dry weight of Potamogeton. Error introduced by the different work steps is small and can be further minimised by a number of method improvements. Recommendations and Perspectives In indoor mesocosm studies, errors due to the perspective adjustment may be circumvented by taking the photos perpendicular to the water surface. Correction for lens aberration, identical light conditions and the use of fluorescence images are considered promising. Field applications are proposed.  相似文献   
175.
Hung CL  Lau RK  Lam JC  Jefferson TA  Hung SK  Lam MH  Lam PK 《Chemosphere》2007,66(7):1175-1182
The potential health risks due to inorganic substances, mainly metals, was evaluated for the two resident marine mammals in Hong Kong, the Indo-Pacific Humpback Dolphin (Sousa chinensis) and the Finless Porpoise (Neophocaena phocaenoides). The stomachs from the carcasses of twelve stranded dolphins and fifteen stranded porpoises were collected and the contents examined. Concentrations of thirteen trace elements (Ag, As, Cd, Co, Cr, Cs, Cu, Hg, Mn, Ni, Se, V and Zn) were determined by inductively coupled plasma mass spectrometer (ICP-MS). An assessment of risks of adverse effects was undertaken using two toxicity guideline values, namely the Reference Dose (RfD), commonly used in human health risk assessment, and the Toxicity Reference Value (TRV), based on terrestrial mammal data. The levels of trace metals in stomach contents of dolphins and porpoises were found to be similar. Risk quotients (RQ) calculated for the trace elements showed that risks to the dolphins and porpoises were generally low and within safe limits using the values based on the TRV, which are less conservative than those based on the RfD values. Using the RfD-based values the risks associated with arsenic, cadmium, chromium, copper, nickel and mercury were comparatively higher. The highest RQ was associated with arsenic, however, most of the arsenic in marine organisms should be in the non-toxic organic form, and thus the calculated risk is likely to be overestimated.  相似文献   
176.
Chelant-enhanced phytoextraction of heavy metals is an emerging technological approach for a non-destructive remediation of contaminated soils. The main objectives of this study were (i) to assess the extraction efficiency of two different synthetic chelating agents (ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedisuccinic acid (EDDS)) for desorbing Pb from two contaminated agricultural soils originating from a mining and smelting district and (ii) to assess the phytoextraction efficiency of maize (Zea mays) and poplar (Populus sp.) after EDTA application. EDTA was more efficient than EDDS in desorbing and complexing Pb from both soils, removing as much as 60% of Pb. Maize exhibited better results than poplar when extracting Pb from the more acidic (pH approximately 4) and more contaminated (up to 1360 mg Pb kg(-1)) agricultural soil originating from the smelting area. On the other hand, poplars proved to be more efficient when grown on the near-neutral (pH approximately 6) and less contaminated (up to 200 mg Pb kg(-1)) agricultural soil originating from the mining area. Furthermore, the addition of EDTA led to a significant increase of Pb content especially in poplar leaves, proving a strong translocation rate within the poplar plants.  相似文献   
177.
Application of microbial hot spots enhances pesticide degradation in soils   总被引:1,自引:0,他引:1  
Through transfer of an active, isoproturon degrading microbial community, pesticide mineralization could be successfully enhanced in various soils under laboratory and outdoor conditions. The microbes, extracted from a soil having high native ability to mineralize this chemical, were established on expanded clay particles and distributed to various soils in the form of microbial "hot spots". Both, diffusion controlled isoproturon mass flow towards these "hot spots" (6microg d(-1)) as well as microbial ability to mineralize the herbicide (approximately 5microg d(-1)) were identified as the main processes enabling a multiple augmentation of the native isoproturon mineralization even in soils with heavy metal contamination. Soil pH-value appears to exert an important effect on the sustainability of this process.  相似文献   
178.
Subsequent to the 1997 promulgation of the Federal Reference Method (FRM) for monitoring fine particulate matter (PM2.5) in ambient air, U.S. Environmental Protection Agency (EPA) received reports that the DOW 704 diffusion oil used in the method's Well Impactor Ninety-Six (WINS) fractionator would occasionally crystallize during field use, particularly under wintertime conditions. Although the frequency of occurrence on a nationwide basis was low, uncertainties existed as to whether crystallization of the DOW 704 oil may adversely affect a sampling event's data quality. In response to these concerns, EPA and the State of Connecticut Department of Environmental Protection jointly conducted a series of specialized tests to determine whether crystallized oil adversely affected the performance of the WINS fractionator. In the laboratory, an experimental setup used dry ice to artificially induce crystallization of the diffusion oil under controlled conditions. Using primary polystyrene latex calibration aerosols, standard size-selective performance tests of the WINS fractionator showed that neither the position nor the shape of the WINS particle size fractionation curve was substantially influenced by the crystallization of the DOW 704 oil. No large particle bounce from the crystallized impaction surface was observed. During wintertime field tests, crystallization of the DOW 704 oil did not adversely affect measured PM2.5 concentrations. Regression of measurements with crystallized DOW 704 versus liquid dioctyl sebacate (DOS) oil produced slope, intercept, and R2 values of 0.98, 0.1, and 0.997 microg/m3, respectively. Additional field tests validated the use of DOS as an effective impaction substrate. As a result of these laboratory and field tests, DOS oil has been approved by EPA as a substitute for DOW 704 oil. Since the field deployment of DOS oil in 2001, users of this alternative oil have not reported any operational problems associated with its use in the PM2.5 FRM. Limited field evaluation of the BGI very sharp cut cyclone indicates that it provides a viable alternative to the WINS fractionator.  相似文献   
179.
A soil which has been polluted with chlorinated benzenes for more than 25 years was used for isolation of adapted microorganisms able to mineralize 1,2,4-trichlorobenzene (1,2,4-TCB). A microbial community was enriched from this soil and acclimated in liquid culture under aerobic conditions using 1,2,4-TCB as a sole available carbon source. From this community, two strains were isolated and identified by comparative sequence analysis of their 16S-rRNA coding genes as members of the genus Bordetella with Bordetella sp. QJ2-5 as the highest homological strain and with Bordetella petrii as the closest related described species. The 16S-rDNA of the two isolated strains showed a similarity of 100%. These strains were able to mineralize 1,2,4-TCB within two weeks to approximately 50% in liquid culture experiments. One of these strains was reinoculated to an agricultural soil with low native 1,2,4-TCB degradation capacity to investigate its bioremediation potential. The reinoculated strain kept its biodegradation capability: (14)C-labeled 1,2,4-TCB applied to this inoculated soil was mineralized to about 40% within one month of incubation. This indicates a possible application of the isolated Bordetella sp. for bioremediation of 1,2,4-TCB contaminated sites.  相似文献   
180.
Dated sediment cores provide an excellent way to investigate the historical input of persistent organic pollutants into the environment and to identify possible sources of pollution. The vertical distribution of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/F) and polychlorinated biphenyls (PCB) was investigated in a sediment core from Greifensee to elucidate the historical trends of PCDD/F and PCB inputs between 1848 and 1999. Concentrations of PCB and PCDD/F increased by more than one order of magnitude between 1930 and 1960. PCB and PCDD/F concentrations were 5700 ng/kg dry weight (dw) and 160 ng/kg dw, respectively, in sediments originating from the late 1930s and reached a maximum of 130,000 ng/kg dw and 2400 ng/kg dw, respectively, in the early 1960s. From 1960 on, concentrations decreased to the 1930s level by the mid 1980s. A remarkable shift in the PCDD/F pattern was observed after the early 1940s. Before 1940, the PCDD/F pattern was PCDF dominated (ratio of PCDD to PCDF=0.41+/-0.11), while the PCDD started to be the major species after the early 1940s (ratio of PCDD to PCDF=1.46+/-0.38). The temporal trends of PCB and PCDD/F correlate surprisingly well with each other. This might be due to the coincidence of two factors. The introduction of PCB on the market in the 1930s resulted in emissions due to the widespread use of these industrial chemicals. In the same time period, waste incineration became an increasingly popular way to get rid of garbage, boosting the PCDD/F emissions significantly. The rapid decline of PCDD/F and PCB concentrations in the sediment starting in the early 1960s reflects the result of better emission control techniques in thermal processes and the improvement of waste water treatment in the catchment of Greifensee.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号